8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antiviral effects of IFIT1 in human cytomegalovirus‐infected fetal astrocytes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prominent feature of human cytomegalovirus (HCMV) is cell tropism specificity for human fetal nervous system, which leads to severe fetal nervous system damage especially in first‐trimester gestation. In this study, human astrocytes isolated from fetal brain were infected with HCMV AD169 and whole genome transcriptome profile was performed. The results showed that the gene expression of interferon stimulated genes (ISGs), chemokine and chemokine receptors were significantly up‐regulated ( P < 0.01). The antiviral replication effects of IFIT1 (Interferon‐induced protein with tetratricopeptide repeats 1, Fc = 148.17) was investigated. Lentivirus with IFIT1 overexpression or knockdown was transduced into astrocytes, respectively. The viral mRNA, protein expression and HCMV titers were determined. The results showed that IE1, IE2, pp65, and viral titers were significantly decreased in IFIT1 overexpression group and enhanced in the knockdown group compared with control one ( P < 0.01). Taken together, this study revealed IFIT1 played an important antiviral role in HCMV infected fetal astrocytes. The prominent feature of human cytomegalovirus (HCMV) is cellular tropism specificity for human fetal brain nervous system leading to severe fetal nervous damage especially in first‐trimester gestation. In this study, human astrocytes isolated from first‐trimester fetal brain were infected with HCMV AD169 and IFIT1 was studied for its antiviral replication effects. The results provided insights into the function of IFIT1 as a key factor in antiviral defense contributing to development of targeted therapeutics to fetal brain with HCMV infection. J. Med. Virol. 89:672–684, 2017 . © 2016 Wiley Periodicals, Inc.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Antiviral actions of interferons.

          C Samuel (2001)
          Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemokines: a new classification system and their role in immunity.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA.

              Antiviral innate immunity relies on the recognition of microbial structures. One such structure is viral RNA that carries a triphosphate group on its 5' terminus (PPP-RNA). By an affinity proteomics approach with PPP-RNA as the 'bait', we found that the antiviral protein IFIT1 (interferon-induced protein with tetratricopeptide repeats 1) mediated binding of a larger protein complex containing other IFIT family members. IFIT1 bound PPP-RNA with nanomolar affinity and required the arginine at position 187 in a highly charged carboxy-terminal groove of the protein. In the absence of IFIT1, the growth and pathogenicity of viruses containing PPP-RNA was much greater. In contrast, IFIT proteins were dispensable for the clearance of pathogens that did not generate PPP-RNA. On the basis of this specificity and the great abundance of IFIT proteins after infection, we propose that the IFIT complex antagonizes viruses by sequestering specific viral nucleic acids.
                Bookmark

                Author and article information

                Contributors
                wangbindr31@126.com
                Journal
                J Med Virol
                J. Med. Virol
                10.1002/(ISSN)1096-9071
                JMV
                Journal of Medical Virology
                John Wiley and Sons Inc. (Hoboken )
                0146-6615
                1096-9071
                09 September 2016
                April 2017
                : 89
                : 4 ( doiID: 10.1002/jmv.v89.4 )
                : 672-684
                Affiliations
                [ 1 ] Department of Microbiology, Key Laboratory of Medicine and Biotechnology of Qingdao Qingdao University Medical College Shandong China
                Author notes
                [*] [* ] Correspondence to: Bin Wang, Department of Microbiology, Key Laboratory of Medicine and Biotechnology of Qingdao, Qingdao University Medical College, Shandong, China.

                E‐mail: wangbindr31@ 123456126.com

                Article
                JMV24674
                10.1002/jmv.24674
                7166973
                27589693
                22ff5cdb-655d-495b-953c-e22858128753
                © 2016 Wiley Periodicals, Inc.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 31 August 2016
                Page count
                Figures: 4, Tables: 3, Pages: 13, Words: 6853
                Funding
                Funded by: National Natural Science Foundation of China , open-funder-registry 10.13039/501100001809;
                Award ID: 81471958
                Award ID: 81070501
                Award ID: 81502298
                Funded by: Natural Science Foundation of Shandong Province
                Award ID: ZR2014JL05
                Funded by: China Postdoctoral Application Research Project
                Award ID: 2016M592142
                Funded by: Qingdao Postdoctoral Application Research Project
                Award ID: 2015164
                Award ID: 2015165
                Funded by: Projects of Medical and Health Technology Development Program of Shandong Province
                Award ID: 2014WS0443
                Award ID: 2013WS0262
                Funded by: Qingdao University Medical Innovation Team of Young Teachers Training Project
                Award ID: 600201304
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                April 2017
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020

                Microbiology & Virology
                human cytomegalovirus,interferon,microarrays,nervous system,antiviral agents,disease control

                Comments

                Comment on this article