30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrasound biomicroscopy is a non-invasive imaging technique, which allows high-resolution evaluation of the anatomical features of the anterior segment of the eye regardless of optical media transparency. This technique provides diagnostically significant information in vivo for the cornea, anterior chamber, chamber angle, iris, posterior chamber, zonules, ciliary body, and lens, and is of great value in assessment of the mechanisms of glaucoma onset. The purpose of this paper is to review the use of ultrasound biomicroscopy in the diagnosis and management of rare diseases of the anterior segment such as mesodermal dysgenesis of the neural crest, iridocorneal endothelial syndrome, phakomatoses, and metabolic disorders.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations.

          Optic pathway glioma (OPG), seen in 15% to 20% of individuals with neurofibromatosis type 1 (NF1), account for significant morbidity in young children with NF1. Overwhelmingly a tumor of children younger than 7 years, OPG may present in individuals with NF1 at any age. Although many OPG may remain indolent and never cause signs or symptoms, others lead to vision loss, proptosis, or precocious puberty. Because the natural history and treatment of NF1-associated OPG is different from that of sporadic OPG in individuals without NF1, a task force composed of basic scientists and clinical researchers was assembled in 1997 to propose a set of guidelines for the diagnosis and management of NF1-associated OPG. This new review highlights advances in our understanding of the pathophysiology and clinical behavior of these tumors made over the last 10 years. Controversies in both the diagnosis and management of these tumors are examined. Finally, specific evidence-based recommendations are proposed for clinicians caring for children with NF1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical use of ultrasound biomicroscopy.

            The authors have developed a method of obtaining images of cross-sections of the intact anterior globe at microscopic resolution. High-frequency ultrasound transducers (50-100 MHz) have been developed and incorporated into a clinical B-scan device capable of producing images in the living human eye to a depth of approximately 4 mm at an axial and lateral resolution approaching 20 microns. Clinical use of this instrument is no more difficult than conventional immersion ultrasonography. The authors' results in a series of 14 clinical cases have shown that this method can provide information unavailable from any other imaging technique. Anterior segment tumors difficult to define with conventional ultrasound can be measured and the extent of invasion determined. Differentiation of tissue on the basis of internal acoustic characteristics is aided by the very fine backscatter speckle patterns at these frequencies. Pathology behind anterior segment opacities can be imaged in detail and the ability to image angle structures in cross-section allows a new quantitative method of gonioscopy. The ability to define the relationship of the iris, posterior chamber, zonules, ciliary body, and lens is potentially helpful in understanding mechanisms of glaucoma. Ocular structures can be measured with increased accuracy. Clinical ultrasound biomicroscopy (UBM) has shown significant potential as an aid in diagnoses of ocular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations.

              Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, which encompasses a range of congential malformations affecting the anterior segment of the eye. ARS shows genetic heterogeneity and mutations of the two genes, PITX2 and FOXC1, are known to be associated with the pathogenesis. There are several excellent reviews dealing with the complexity of the phenotype and genotype of ARS. In this study, we will attempt to give a brief review of the clinical features and the relevant diagnostic approaches, together with a detailed review of published PITX2 and FOXC1 mutations.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2016
                29 July 2016
                : 10
                : 1453-1459
                Affiliations
                [1 ]Ophthalmology Unit, Saint Andrea Hospital, Department of Neurosciences, Mental Health and Sense Organs, University of Rome “Sapienza”, Rome, Italy
                [2 ]Polimed Beltramelli Medical Centre, Rome, Italy
                [3 ]Department of Sense Organs, Ophthalmology Unit, University of Rome “Sapienza”, Rome, Italy
                Author notes
                Correspondence: Alessandro Lambiase, Department of Sense Organs, Ophthalmology Unit, University of Rome “Sapienza”, viale del Policlinico 155, Rome 00161, Italy, Email alessandro.lambiase@ 123456uniroma1.it
                Article
                opth-10-1453
                10.2147/OPTH.S112166
                4975163
                27536058
                22fd65b5-fa03-466b-94d4-2a38d3846594
                © 2016 Mannino et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Ophthalmology & Optometry
                glaucoma,rare diseases,ultrasound biomicroscopy,neural crest,iridocorneal syndrome,phakomatoses,metabolic disorders

                Comments

                Comment on this article