4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      End-to-End DNN Inference on a Massively Parallel Analog In Memory Computing Architecture

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The demand for computation resources and energy efficiency of Convolutional Neural Networks (CNN) applications requires a new paradigm to overcome the "Memory Wall". Analog In-Memory Computing (AIMC) is a promising paradigm since it performs matrix-vector multiplications, the critical kernel of many ML applications, in-place in the analog domain within memory arrays structured as crossbars of memory cells. However, several factors limit the full exploitation of this technology, including the physical fabrication of the crossbar devices, which constrain the memory capacity of a single array. Multi-AIMC architectures have been proposed to overcome this limitation, but they have been demonstrated only for tiny and custom CNNs or performing some layers off-chip. In this work, we present the full inference of an end-to-end ResNet-18 DNN on a 512-cluster heterogeneous architecture coupling a mix of AIMC cores and digital RISC-V cores, achieving up to 20.2 TOPS. Moreover, we analyze the mapping of the network on the available non-volatile cells, compare it with state-of-the-art models, and derive guidelines for next-generation many-core architectures based on AIMC devices.

          Related collections

          Author and article information

          Journal
          23 November 2022
          Article
          2211.12877
          22df6171-8486-4dde-882e-cb8a808fa850

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.DC

          Networking & Internet architecture
          Networking & Internet architecture

          Comments

          Comment on this article