86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action.

          Methods

          In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines.

          Results

          Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling.

          Conclusions

          These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil.

            Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor, improves survival when combined with carboplatin/paclitaxel for advanced nonsquamous non-small-cell lung cancer (NSCLC). This randomized phase III trial investigated the efficacy and safety of cisplatin/gemcitabine (CG) plus bevacizumab in this setting. Patients were randomly assigned to receive cisplatin 80 mg/m2 and gemcitabine 1,250 mg/m(2) for up to six cycles plus low-dose bevacizumab (7.5 mg/kg), high-dose bevacizumab (15 mg/kg), or placebo every 3 weeks until disease progression. The trial was not powered to compare the two doses directly. The primary end point was amended from overall survival (OS) to progression-free survival (PFS). Between February 2005 and August 2006, 1,043 patients were randomly assigned (placebo, n = 347; low dose, n = 345; high dose, n = 351). PFS was significantly prolonged; the hazard ratios for PFS were 0.75 (median PFS, 6.7 v 6.1 months for placebo; P = .003) in the low-dose group and 0.82 (median PFS, 6.5 v 6.1 months for placebo; P = .03) in the high-dose group compared with placebo. Objective response rates were 20.1%, 34.1%, and 30.4% for placebo, low-dose bevacizumab, and high-dose bevacizumab plus CG, respectively. Duration of follow-up was not sufficient for OS analysis. Incidence of grade 3 or greater adverse events was similar across arms. Grade > or = 3 pulmonary hemorrhage rates were < or = 1.5% for all arms despite 9% of patients receiving therapeutic anticoagulation. Combining bevacizumab (7.5 or 15 mg/kg) with CG significantly improved PFS and objective response rate. Bevacizumab plus platinum-based chemotherapy offers clinical benefit for bevacizumab-eligible patients with advanced NSCLC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ERK cascade: a prototype of MAPK signaling.

              Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2010
                5 February 2010
                : 10
                : 34
                Affiliations
                [1 ]Women's Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
                [2 ]Cancer Genetics & Signaling Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
                [3 ]Alfacell Corporation, 300 Atrium Drive, Somerset, NJ, 08873, USA
                [4 ]Current address: Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
                Article
                1471-2407-10-34
                10.1186/1471-2407-10-34
                2829496
                20137089
                22a53f02-711e-40c9-ae04-215e3d6f1ad4
                Copyright ©2010 Altomare et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 July 2009
                : 5 February 2010
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article