1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consolidated theory of fluid thermodiffusion

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the Onsager--Stefan--Maxwell thermodiffusion equations, which account for the Soret and Dufour effects in multicomponent fluids by treating heat as a pseudo-component. Unlike transport laws derived from kinetic theory, this framework preserves the structure of the isothermal Stefan--Maxwell equations, separating the thermodynamic forces that drive diffusion from the force that drives heat flow. The Onsager--Stefan--Maxwell transport-coefficient matrix is symmetric, and the second law of thermodynamics imbues it with simple spectral characteristics. This new approach proves equivalent to both the intuitive extension of Fick's law and the generalized Stefan--Maxwell equations popularized by Bird, Stewart, and Lightfoot. A general inversion process allows the unique formulation of flux-explicit transport equations relative to any choice of convective reference velocity. Stefan--Maxwell diffusivities and thermal diffusion factors are tabulated for gaseous mixtures containing helium, argon, neon, krypton, and xenon. The framework is deployed to perform numerical simulations of steady three-dimensional thermodiffusion in a ternary gas.

          Related collections

          Author and article information

          Journal
          10 September 2021
          Article
          2109.05082
          227f9085-feec-41ff-84fb-321003187b89

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          35 pages, 4 figures
          physics.flu-dyn physics.chem-ph

          Thermal physics & Statistical mechanics,Physical chemistry
          Thermal physics & Statistical mechanics, Physical chemistry

          Comments

          Comment on this article