3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterotopic ossification (HO), the pathologic formation of extraskeletal bone, can be disabling and lethal. However, the underlying molecular mechanisms were largely unknown. The present study aimed to clarify the involvement of secreted protein acidic and rich in cysteine (SPARC) and the underlying mechanism in rat model of HO. The mechanistic investigation on roles of SPARC in HO was examined through gain- and loss-of-function approaches of SPARC, with alkaline-phosphatase (ALP) activity, mineralized nodules, and osteocalcin (OCN) content measured. To further confirm the regulatory role of SPARC, levels of mitogen-activated protein kinase (MAPK) signaling pathways-related proteins (extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38, nuclear factor κ-B (NF-κB), and IkB kinase β (IKKβ)) were determined. Bone marrow mesenchymal stem cells were treated with pathway inhibitor to investigate the relationship among SPARC, MAPK signaling pathway, and HO. The results suggested that SPARC expression was up-regulated in Achilles tendon tissues of HO rats. Silencing of SPARC could decrease phosphorylation of ERK, JNK, p38, NF-κB, and IKKβ. Additionally, silencing of SPARC or inhibition of MAPK signaling pathway could reduce the ALP activity, the number of mineralized nodules, and OCN content, thus impeding HO. To sum up, our study identifies the inhibitory role of SPARC gene silencing in HO via the MAPK signaling pathway, suggesting SPARC presents a potential target for HO therapy.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK.

          While NF-kappaB is considered to play key roles in the development and progression of many cancers, the mechanisms whereby this transcription factor is activated in cancer are poorly understood. A key oncoprotein in a variety of cancers is the serine-threonine kinase Akt, which can be activated by mutations in PI3K, by loss of expression/activity of PTEN, or through signaling induced by growth factors and their receptors. A key effector of Akt-induced signaling is the regulatory protein mTOR (mammalian target of rapamycin). We show here that mTOR downstream from Akt controls NF-kappaB activity in PTEN-null/inactive prostate cancer cells via interaction with and stimulation of IKK. The mTOR-associated protein Raptor is required for the ability of Akt to induce NF-kappaB activity. Correspondingly, the mTOR inhibitor rapamycin is shown to suppress IKK activity in PTEN-deficient prostate cancer cells through a mechanism that may involve dissociation of Raptor from mTOR. The results provide insight into the effects of Akt/mTOR-dependent signaling on gene expression and into the therapeutic action of rapamycin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification.

            Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SPARC/osteonectin in mineralized tissue.

              Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM40) is one of the most abundant non-collagenous protein expressed in mineralized tissues. This review will focus on elucidating functional roles of SPARC in bone formation building upon results from non-mineralized cells and tissues, the phenotype of SPARC-null bones, and recent discoveries of human diseases with either dysregulated expression of SPARC or mutations in the gene encoding SPARC that give rise to bone pathologies. The capacity of SPARC to influence pathways involved in extracellular matrix assembly such as procollagen processing and collagen fibril formation as well as the capacity to influence osteoblast differentiation and osteoclast activity will be addressed. In addition, the potential for SPARC to regulate cross-linking of extracellular matrix proteins by members of the transglutaminase family of enzymes is explored. Elucidating defined biological functions of SPARC in terms of bone formation and turnover are critical. Further insight into specific cellular mechanisms involved in the formation and homeostasis of mineralized tissues will lead to a better understanding of disease progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                29 November 2019
                12 November 2019
                : 39
                : 11
                : BSR20191805
                Affiliations
                Department of Orthopedics, The 89th Hospital of Chinese People’s Liberation Army, Weifang 261021, P.R. China
                Author notes
                Correspondence: Zhentao Zhang ( zhzhentao@ 123456yeah.net )
                Author information
                http://orcid.org/0000-0002-9439-5028
                Article
                BSR20191805
                10.1042/BSR20191805
                6851515
                31548362
                2274aaaa-d38a-43f1-9b82-99f93759c2a7
                © 2019 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 01 June 2019
                : 08 September 2019
                : 18 September 2019
                : 23 September 2019
                Page count
                Pages: 12
                Categories
                Gene Expression & Regulation
                Research Articles

                Life sciences
                alp activity,heterotopic ossification,mineralized nodules,mitogen-activated protein kinase signaling pathway,ocn content,secreted protein acidic and rich in cysteine

                Comments

                Comment on this article