6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular growth, function, and protection require proper iron management, and ferritin plays a crucial role as the major iron sequestration and storage protein. Ferritin is a 24 subunit spherical shell protein composed of both light (FTL) and heavy chain (FTH1) subunits, possessing complimentary iron-handling functions and forming three-fold and four-fold pores. Iron uptake through the three-fold pores is well-defined, but the unloading process somewhat less and generally focuses on lysosomal ferritin degradation although it may have an additional, energetically efficient pore mechanism. Hereditary Ferritinopathy (HF) or neuroferritinopathy is an autosomal dominant neurodegenerative disease caused by mutations in the FTL C-terminal sequence, which in turn cause disorder and unraveling at the four-fold pores allowing iron leakage and enhanced formation of toxic, improperly coordinated iron (ICI). Histopathologically, HF is characterized by iron deposition and formation of ferritin inclusion bodies (IBs) as the cells overexpress ferritin in an attempt to address iron accumulation while lacking the ability to clear ferritin and its aggregates. Overexpression and IB formation tax cells materially and energetically, i.e., their synthesis and disposal systems, and may hinder cellular transport and other spatially dependent functions. ICI causes cellular damage to proteins and lipids through reactive oxygen species (ROS) formation because of high levels of brain oxygen, reductants and metabolism, taxing cellular repair. Iron can cause protein aggregation both indirectly by ROS-induced protein modification and destabilization, and directly as with mutant ferritin through C-terminal bridging. Iron release and ferritin degradation are also linked to cellular misfunction through ferritinophagy, which can release sufficient iron to initiate the unique programmed cell death process ferroptosis causing ROS formation and lipid peroxidation. But IB buildup suggests suppressed ferritinophagy, with elevated iron from four-fold pore leakage together with ROS damage and stress leading to a long-term ferroptotic-like state in HF. Several of these processes have parallels in cell line and mouse models. This review addresses the roles of ferritin structure and function within the above-mentioned framework, as they relate to HF and associated disorders characterized by abnormal iron accumulation, protein aggregation, oxidative damage, and the resulting contributions to cumulative cellular stress and death.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy

          Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration 1,2 . Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo including organelles, proteins, or intracellular pathogens are targeted for selective autophagy is limited 3 . We employed quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins, including cargo receptors. Like known cargo receptors, NCOA4 was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species 4 but is degraded via autophagy to release iron 5,6 through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin leads to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy) critical for iron homeostasis and provides a resource for further dissection of autophagosomal cargo-receptor connectivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy.

            Ferroptosis is a form of regulated cell death that is dependent on iron and reactive oxygen species (ROS) and is characterized by lipid peroxidation. It is morphologically and biochemically distinct and disparate from other processes of cell death. As ferroptosis is induced by inhibition of cysteine uptake or inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4), the process is favored by chemical or mutational inhibition of the cystine/glutamate antiporter and culminates in the accumulation of reactive oxygen species (ROS) in the form of lipid hydroperoxides. Excessive lipid peroxidation leads to death by ferroptosis and the phenotype is accentuated respectively by the repletion and depletion of iron and glutathione in cells. Furthermore, oxidized phosphatidylethanolamines (PE) harbouring arachidonoyl (AA) and adrenoyl moieties (AdA) have been shown as proximate executioners of ferroptosis. Induction of ferroptosis due to cysteine depletion leads to the degradation of ferritin (i.e. ferritinophagy), which releases iron via the NCOA4-mediated autophagy pathway. Evidence of the manifestation of ferroptosis in vivo in iron overload mice mutants is emerging. Thus, a concerted synchronization of iron availability, ROS generation, glutamate excess and cysteine deficit leads to ferroptosis. A number of questions on the molecular mechanisms of some features of ferroptosis are highlighted as subjects for future investigations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis

              Lipoxygenases (LOXs) have been implicated as central players in ferroptosis, a recently characterized cell death modality associated with the accumulation of lipid hydroperoxides: the products of LOX catalysis. To provide insight on their role, human embryonic kidney cells were transfected to overexpress each of the human isoforms associated with disease, 5-LOX, p12-LOX, and 15-LOX-1, which yielded stable cell lines that were demonstrably sensitized to ferroptosis. Interestingly, the cells could be rescued by less than half of a diverse collection of known LOX inhibitors. Furthermore, the cytoprotective compounds were similarly potent in each of the cell lines even though some were clearly isoform-selective LOX inhibitors. The cytoprotective compounds were subsequently demonstrated to be effective radical-trapping antioxidants, which protect lipids from autoxidation, the autocatalytic radical chain reaction that produces lipid hydroperoxides. From these data (and others reported herein), a picture emerges wherein LOX activity may contribute to the cellular pool of lipid hydroperoxides that initiate ferroptosis, but lipid autoxidation drives the cell death process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                11 December 2019
                2019
                : 13
                : 1195
                Affiliations
                [1] 1Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, IN, United States
                [2] 2Department of Pathology and Laboratory Medicine, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, IN, United States
                Author notes

                Edited by: Giorgio Biasiotto, University of Brescia, Italy

                Reviewed by: Ikuo Tooyama, Shiga University of Medical Science, Japan; Andrzej Friedman, Medical University of Warsaw, Poland; Shashank Masaldan, University of Melbourne, Australia

                *Correspondence: Barry B. Muhoberac bmuhober@ 123456iupui.edu

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01195
                6917665
                31920471
                226cd8f9-1ec3-4639-9088-0a415497013b
                Copyright © 2019 Muhoberac and Vidal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 June 2019
                : 21 October 2019
                Page count
                Figures: 6, Tables: 1, Equations: 1, References: 117, Pages: 20, Words: 16642
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke 10.13039/100000065
                Award ID: NS050227
                Award ID: NS063056
                Funded by: National Institute on Aging 10.13039/100000049
                Categories
                Neuroscience
                Review

                Neurosciences
                hereditary ferritinopathy,neurodegeneration,mutant ferritin,ros,ferritinophagy,ferroptosis

                Comments

                Comment on this article