15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Growth and Activities of the Dominant Functional Microbiota of Chicken Manure Composts in the Presence of Maize Straw

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a consequence of intensive feeding, the bulk deposition of livestock manure causes severe environmental problems. Composting is a promising method for waste disposal, and the fermentation process is driven by microbial communities. However, chicken manure contains diverse gut microbes, mainly species derived from Proteobacteria, which may include pathogens that threaten human health. To evaluate composting as a harmless treatment of livestock manure, the dynamics of the microbiota in two chicken manure composts were studied, and the influences of adding maize straw on the compost microbiota were compared. The results revealed that microbes from Firmicutes including Bacillus and Lentibacillus are the most dominant degraders with a strong amino acid metabolism, and they secrete a diverse array of proteases as revealed in metaproteomics data. The addition of maize straw to the chicken manure compost accelerated species succession at the initial stage, and stimulated carbohydrate metabolism in the dominant microbiota. Besides, under the resulting high temperature (>70°C) conditions, the relative abundance of Proteobacteria was reduced by 78% in composts containing maize straw by day 4, which was faster than in compost without added maize straw, in which the abundance was reduced by 66%. Adding maize straw to chicken manure composts can therefore increase the fermentation temperature and inhibit the growth of Proteobacteria. In general, these findings provide increased insight into the dynamic changes among the dominant functional microbiota in chicken manure composts, and may contribute to the optimization of livestock manure composting on an industrial scale.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Composting of animal manures and chemical criteria for compost maturity assessment. A review.

          New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting. In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses

            Background Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Material and methods Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. Results A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P < 0.001). The microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were observed between ilea and caeca, respectively (P < 0.05). Conclusions The caeca microbial communities were more diverse in comparison to ilea. The main functional differences between the two sites were found to be related to nutrient absorption and bacterial colonization. Based on the composition of the microbial community, future gut modulation with beneficial bacteria such as probiotics may benefit the host. Electronic supplementary material The online version of this article (doi:10.1186/s13099-015-0051-7) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

              Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                29 May 2018
                2018
                : 9
                : 1131
                Affiliations
                [1] 1State Key Laboratory of Microbial Technology, Shandong University , Jinan, China
                [2] 2School of Computer Science and Technology, Shandong University , Jinan, China
                [3] 3Lu Qing Seed Co., Ltd. , Jinan, China
                [4] 4Laboratory of Antimicrobial Systems Pharmacology, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University , Melbourne, VIC, Australia
                Author notes

                Edited by: Pascal E. Saikaly, King Abdullah University of Science and Technology, Saudi Arabia

                Reviewed by: Zhao Chen, University of California, Davis, United States; Krishnaveni Venkidusamy, University of South Australia, Australia; Dong Li, University of California, Santa Barbara, United States

                *Correspondence: Lushan Wang, lswang@ 123456sdu.edu.cn

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01131
                5986910
                29896185
                22527618-c3b8-4e25-aba8-25d1e2f02a78
                Copyright © 2018 Zhang, Li, Pan, Shi, Feng, Gong, Li and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 March 2018
                : 14 May 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 48, Pages: 11, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                chicken manure compost,metaproteomics,functional microbiota,microbial diversity,bacillus

                Comments

                Comment on this article