1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analyzing the multi-target pharmacological mechanism of folium Artemisia argyi acting on breast cancer: a network pharmacology approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Folium Artemisia argyi (FAA) is a traditional Chinese herbal medicine that is widely used in the clinic. However, the underlying mechanisms of its anticancer effects have not been fully elucidated.

          Methods

          In this study, we applied a network pharmacology approach to identify the potential mechanisms of FAA against breast cancer. To be specific, we screened the active ingredients and potential targets of the FAA through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Meanwhile, we employed the oral bioavailability (OB) and drug-likeness (DL) to search for potential bioactive compounds of FAA. Breast cancer-related target genes data were gathered from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and the protein-protein interaction (PPI) data were acquired from the Search Tool for the Retrieval of Interacting Genes (STRING) database. In addition, we constructed the network and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis.

          Results

          We obtained a total of nine active ingredients and 236 potential targets from FAA to construct a network, which showed that quercetin served as the major ingredient in FAA. AKT1 (RAC-alpha serine/threonine-protein kinase), MYC (Myc proto-oncogene protein), CASP3 (Caspase-3), EGFR (Epidermal growth factor receptor), JUN (Transcription factor AP-1), CCND1 (G1/S-specific cyclin-D1), VEGFA (Vascular endothelial growth factor A), ESR1 (Estrogen receptor), MAPK1 (Mitogen-activated protein kinase 1), and EGF (pro-epidermal growth factor) were identified as key targets of FAA in the treatment of breast cancer. The PPI cluster demonstrated that AKT1 was the seed in this cluster, indicating that AKT1 played a crucial role in connecting other nodes in the PPI network. This enrichment demonstrated that FAA was highly related to signal transduction, endocrine system, replication and repair, as well as cell growth and death. The enrichment results also verified that the underlying mechanisms of FAA against breast cancer might be attributed to the coordinated regulation of several cancer-related pathways, such as the MAPK and mammalian target of rapamycin (mTOR) signaling pathways, among others.

          Conclusions

          This study identified the potential targets and pathways of FAA in the treatment of breast cancer using a network pharmacology approach, and systematically elucidated the mechanisms of FAA in the treatment of breast cancer.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoscape: a software environment for integrated models of biomolecular interaction networks.

            Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KEGG: kyoto encyclopedia of genes and genomes.

              M Kanehisa (2000)
              KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
                Bookmark

                Author and article information

                Journal
                Ann Transl Med
                Ann Transl Med
                ATM
                Annals of Translational Medicine
                AME Publishing Company
                2305-5839
                2305-5847
                December 2022
                December 2022
                : 10
                : 24
                : 1368
                Affiliations
                [1 ]deptDepartment of Medical Oncology, Harbin Medical University Cancer Hospital , Harbin Medical University , Harbin, China;
                [2 ]deptDepartment of Clinical Laboratory , The Seventh Hospital in Qiqihar , Qiqihar, China;
                [3 ]deptInstitute of Cancer Prevention and Treatment , Harbin Medical University , Harbin, China;
                [4 ]Heilongjiang Academy of Medical Sciences , Harbin, China
                Author notes

                Contributions: (I) Conception and design: Q Zhang; (II) Administrative support: Q Zhang, H Ji; (III) Provision of study materials or patients: X Wang, H Zhang, X Niu, Y Yang, X Yang; (IV) Collection and assembly of data: L Yin, Y Wang, C Zhang, R Shui; (V) Data analysis and interpretation: Ying Song, J Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                [#]

                These authors contributed equally to this work.

                Correspondence to: Qingyuan Zhang. Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China. Email: zqyHMU1965@ 123456163.com ; Hongfei Ji. Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, China. Email: jihongfei@ 123456hrbmu.edu.cn .
                Article
                atm-10-24-1368
                10.21037/atm-22-5769
                9843367
                222fd7cc-d002-4bf6-be02-dc9173a72572
                2022 Annals of Translational Medicine. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 03 November 2022
                : 15 December 2022
                Categories
                Original Article

                folium artemisia argyi (faa),breast cancer,network pharmacology,herb

                Comments

                Comment on this article