6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness

      1 , 2 , 1 , 1 , 2
      Journal of Neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people’s estimation of these properties using stiffness estimation as a test case. We recorded participants’ responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants’ force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all of these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

          NEW & NOTEWORTHY Introducing delay to force feedback during interaction with an elastic force field biases the perceived stiffness of the force field. We show that this bias depends on the hand that was used for probing but not on handedness. At the same time, both left-handed and right-handed participants adjusted their applied grip force while using either their left or right hands in anticipation of the correct magnitude and timing despite the delay in load force.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Transatlantic robot-assisted telesurgery.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Size-contrast illusions deceive the eye but not the hand

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for a dynamic-dominance hypothesis of handedness.

              Handedness is a prominent behavioral phenomenon that emerges from asymmetrical neural organization of human motor systems. However, the aspects of motor performance that correspond to handedness remain largely undetermined. A recent study examining interlimb differences in coordination of reaching demonstrated dominant arm advantages in controlling limb segment inertial dynamics (Sainburg and Kalakanis 2000). Based on these findings, I now propose the dynamic-dominance hypothesis, which states that the essential factor that distinguishes dominant from nondominant arm performance is the facility governing the control of limb dynamics. The purpose of this study is to test two predictions of this hypothesis: 1) adaptation to novel intersegmental dynamics, requiring the development of new dynamic transforms, should be more effective for the dominant arm; 2) there should be no difference in adapting to visuomotor rotations performed with the dominant as compared with the nondominant arm. The latter prediction is based on the idea that visual information about target position is translated into an internal reference frame prior to transformation of the movement plan into dynamic properties, which reflect the forces required to produce movement. To test these predictions, dominant arm adaptation is compared to nondominant arm adaptation during exposure to novel inertial loads and to novel visuomotor rotations. The results indicate substantial interlimb differences in adaptation to novel inertial dynamics, but equivalent adaptation to novel visuomotor rotations. Inverse dynamic analysis revealed better coordination of dominant arm muscle torques across both shoulder and elbow joints, as compared with nondominant arm muscle torques. As a result, dominant arm movements were produced with a fraction of the mean squared muscle torque computed for nondominant arm movements made at similar speeds. These results support the dynamic-dominance hypothesis, indicating that interlimb asymmetries in control arise downstream to visuomotor transformations, when dynamic variables that correspond to the forces required for motion are specified.
                Bookmark

                Author and article information

                Journal
                Journal of Neurophysiology
                Journal of Neurophysiology
                American Physiological Society
                0022-3077
                1522-1598
                August 01 2018
                August 01 2018
                : 120
                : 2
                : 781-794
                Affiliations
                [1 ]Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
                [2 ]Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
                Article
                10.1152/jn.00822.2017
                222eef27-17f0-4447-8445-9d8c92efc06e
                © 2018
                History

                Comments

                Comment on this article