Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To achieve both structural changes and rapid synthesis of the tetracyclic scaffold relevant to artemisinins, we explored two kinds of de novo synthetic approaches that generate both skeletally diversified tetracyclic peroxides and 6-aza-artemisinins. The anti-malarial activities of the tetracyclic peroxides with distinct skeletal arrays, however, were moderate and far inferior to artemisinins. Given the privileged scaffold of artemisinins, we next envisioned element implantation at the C6 position with a nitrogen without the trimmings of substituents and functional groups. This molecular design allowed the deep-seated structural modification of the hitherto unexplored cyclohexane moiety (C-ring) while keeping the three-dimensional structure of artemisinins. Notably, this approach induced dramatic changes of retrosynthetic transforms that allow an expeditious catalytic asymmetric synthesis with generation of substitutional variations at three sites (N6, C9, and C3) of the 6-aza-artemisinins. These de novo synthetic approaches led to the lead discovery with substantial intensification of the in vivo activities, which undermine the prevailing notion that the C-ring of artemisinins appears to be merely a structural unit but to be a functional area as the anti-malarial pharmacophore. Furthermore, we unexpectedly found that racemic 6-aza-artemisinin (33) exerted exceedingly potent in vivo efficacies superior to the chiral one and the first-line drug, artesunate.

          Related collections

          Author and article information

          Journal
          J Org Chem
          The Journal of organic chemistry
          American Chemical Society (ACS)
          1520-6904
          0022-3263
          Aug 07 2020
          : 85
          : 15
          Affiliations
          [1 ] Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
          [2 ] Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan.
          [3 ] Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
          [4 ] Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States.
          [5 ] Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
          Article
          10.1021/acs.joc.0c01017
          32610901
          221f97e2-c95a-4d48-a60b-1f45f630dd87
          History

          Comments

          Comment on this article