17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Purification and Functional Characterisation of Rhinocerase, a Novel Serine Protease from the Venom of Bitis gabonica rhinoceros

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders.

          Methodology/Principal Findings

          In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate.

          Conclusions/Significance

          A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Aggregation of blood platelets by adenosine diphosphate and its reversal.

          G V Born (1962)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Snake venom thrombin-like enzymes: from reptilase to now.

            The snake venom thrombin-like enzymes (SVTLEs) comprise a number of serine proteases functionally and structurally related to thrombin. Until recently, only nine complete sequences of this subgroup of the serine protease family were known. Over the past 5 years, the primary structure of several SVTLEs has been characterized, and now this family includes several members. Of particular interest is their possible use in pathologies such as thrombosis. The aim of the present review is to summarize the state of the art concerning the evolutionary, structural and biological features of the SVTLEs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa.

              The protein composition of the venoms of the West African Gaboon viper (Bitis gabonica rhinoceros), the rhinoceros viper (Bitis nasicornis), and the horned puff adder (Bitis caudalis) were analyzed by RP-HPLC, N-terminal sequencing, SDS-PAGE, MALDI-TOF peptide mass fingerprinting, and CID-MS/MS. In line with previous proteomic and transcriptomic analyses showing that snake venom proteins belong to only a few major protein families, the venom proteomes of Bitis gabonica rhinoceros, Bitis nasicornis, and Bitis caudalis comprise, respectively, toxins from 11, 9, and 8 toxin families. Dimeric disintegrins, PLA2 molecules, serine proteinases, a CRISP, C-type lectin-like proteins, L-amino acid oxidases, and snake venom metalloproteases are present in the three Bitis snake venoms, though they depart from each other in the composition and the relative abundance of their toxins. The venom composition appears to keep information on the evolutionary history of congeneric taxa. Protein similarity coefficients used to estimate the similarity of venom proteins of the Bitis taxa sampled here and in previous studies (eg. Bitis arietans and Bitis gabonica gabonica) support the monophyly of the three West African taxa (B.g. gabonica, B.g. rhinoceros, and B. nasicornis) based on genetic distance reconstructions, the lack of alliances between B. arietans and any other Bitis species, and are consistent with the taxonomic association of Bitis caudalis within the differentiated group of small Bitis species. The low level of venom toxin composition similarity between the two conventionally recognized subspecies of Bitis gabonica, B. g. gabonica and B. g. rhinoceros, supports the consideration by some authors of B. g. rhinoceros as a separate species, Bitis rhinoceros. Moreover, our proteomic data fit better to a weighted phylogram based on overall genetic distances than to an unweighted maximum-parsimony tree.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                12 March 2010
                : 5
                : 3
                : e9687
                Affiliations
                [1 ]School of Biological Sciences, University of Reading, Reading, United Kingdom
                [2 ]The Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                [3 ]Blood Transfusion Research Group, King Saud University, Riyadh, Saudi Arabia
                Griffith University, Australia
                Author notes

                Conceived and designed the experiments: SV RAH ABB JMG GH. Performed the experiments: SV. Analyzed the data: SV RAH ABB JMG GH. Contributed reagents/materials/analysis tools: SV RAH JMG GH. Wrote the paper: SV.

                Article
                09-PONE-RA-14442R1
                10.1371/journal.pone.0009687
                2837349
                20300193
                2203e58d-9828-4145-afe5-5d013be31f1e
                Vaiyapuri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 November 2009
                : 17 February 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Biochemistry
                Biophysics
                Biochemistry/Protein Chemistry
                Biophysics/Protein Chemistry and Proteomics
                Biotechnology/Protein Chemistry and Proteomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article