7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atoh1 Directs Regeneration and Functional Recovery of the Mature Mouse Vestibular System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Utricular hair cells (HCs) are mechanoreceptors required for vestibular function. After damage, regeneration of mammalian utricular HCs is limited and regenerated HCs appear immature. Thus, loss of vestibular function is presumed irreversible. Here, we found partial HC replacement and functional recovery in the mature mouse utricle, both enhanced by overexpressing the transcription factor Atoh1. Following damage, long-term fate mapping revealed that support cells non-mitotically and modestly regenerated HCs displaying no or immature bundles. By contrast, Atoh1 overexpression stimulated proliferation and widespread regeneration of HCs exhibiting elongated bundles, patent mechanotransduction channels, and synaptic connections. Finally, although damage without Atoh1 overexpression failed to initiate or sustain a spontaneous functional recovery, Atoh1 overexpression significantly enhanced both the degree and percentage of animals exhibiting sustained functional recovery. Therefore, the mature, damaged utricle has an Atoh1-responsive regenerative program leading to functional recovery, underscoring the potential of a reprogramming approach to sensory regeneration.

          Graphical Abstract

          In Brief

          The mature mouse utricle, which detects linear acceleration, displays limited regeneration, but whether function returns is unknown. Sayyid et al. show that regenerated hair cells appear and mature over months, resulting in a limited, unsustained functional recovery. Atoh1 overexpression enhances regeneration and leads to a sustained recovery of vestibular function.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Math1: an essential gene for the generation of inner ear hair cells.

          The mammalian inner ear contains the cochlea and vestibular organs, which are responsible for hearing and balance, respectively. The epithelia of these sensory organs contain hair cells that function as mechanoreceptors to transduce sound and head motion. The molecular mechanisms underlying hair cell development and differentiation are poorly understood. Math1, a mouse homolog of the Drosophila proneural gene atonal, is expressed in inner ear sensory epithelia. Embryonic Math1-null mice failed to generate cochlear and vestibular hair cells. This gene is thus required for the genesis of hair cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo.

            Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced at birth, we observed spontaneous regeneration of hair cells. Fate-mapping experiments demonstrated that neighboring supporting cells acquired a hair cell fate, which increased in a basal to apical gradient, averaging over 120 regenerated hair cells per cochlea. The normally mitotically quiescent supporting cells proliferated after hair cell ablation. Concurrent fate mapping and labeling with mitotic tracers showed that regenerated hair cells were derived by both mitotic regeneration and direct transdifferentiation. Over time, regenerated hair cells followed a similar pattern of maturation to normal hair cell development, including the expression of prestin, a terminal differentiation marker of outer hair cells, although many new hair cells eventually died. Hair cell regeneration did not occur when ablation was induced at one week of age. Our findings demonstrate that the neonatal mouse cochlea is capable of spontaneous hair cell regeneration after damage in vivo. Thus, future studies on the neonatal cochlea might shed light on the competence of supporting cells to regenerate hair cells and on the factors that promote the survival of newly regenerated hair cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inducible site-specific recombination in myelinating cells.

              To explore the function of genes expressed by myelinating cells we have developed a model system that allows for the inducible ablation of predetermined genes in oligodendrocytes and Schwann cells. The Cre/loxP recombination system provides the opportunity to generate tissue-specific somatic mutations in mice. We have used a fusion protein between the Cre recombinase and a mutated ligand-binding domain of the human estrogen receptor (CreER(T)) to obtain inducible, site-specific recombination. CreER(T) expression was placed under the transcriptional control of the regulatory sequences of the myelin proteolipid protein (PLP) gene, which is abundantly expressed in oligodendrocytes and to a lesser extent in Schwann cells. The CreER(T) fusion protein translocated to the nucleus and mediated the recombination of a LacZ reporter transgene in myelinating cells of PLP/CreER(T) mice injected with the synthetic steroid tamoxifen. In untreated animals CreER(T) remained cytoplasmic, and there was no evidence of recombination. The PLP/ CreER(T) animals should be very useful in elucidating and distinguishing a particular gene's function in the formation and maintenance of the myelin sheath and in analyzing mature oligodendrocyte function in pathological conditions. Copyright 2002 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                101573691
                39703
                Cell Rep
                Cell Rep
                Cell reports
                2211-1247
                20 July 2019
                09 July 2019
                26 July 2019
                : 28
                : 2
                : 312-324.e4
                Affiliations
                [1 ]Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
                [2 ]Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583, USA
                [3 ]Lead Contact
                Author notes

                AUTHOR CONTRIBUTIONS

                Z.N.S., T.W., S.M.J., and A.G.C. designed experiments. Z.N.S., L.C., T.W., S.M.J., and A.G.C. performed experiments and analyzed data. Z.N.S., T.W., S.M.J., and A.G.C. wrote the manuscript.

                [* ]Correspondence: aglcheng@ 123456stanford.edu
                Article
                NIHMS1534203
                10.1016/j.celrep.2019.06.028
                6659123
                31291569
                21f29784-4030-4a1a-8872-e89c6c357be8

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article