15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shewanella chilikensis MG22 isolated from tannery site for malachite green decolorization in microbial fuel cell: a proposed solution for recirculating aquaculture system (RAS)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malachite Green (MG) dye of the triphenylmethane group is a toxic compound used in the aquaculture industry as an antifungal agent, however, it can accumulate in fish and pose toxicity. The present work aims to remove MG in Microbial Fuel Cell (MFC) as a sustainable and eco-friendly solution. Out of six samples, the highest malachite green degradation was obtained by a sample obtained from Robiki tannery site in agar plates in 24 h at 37 °C. Robiki sample was used to inoculate the anodic chamber in Microbial Fuel cell, the resulting average electricity production was 195.76 mV for two weeks. The decolorization average was almost 88%. The predominant bacteria responsible for MG decolorization and electricity production were identified using 16S rRNA as Shewanella chilikensis strain MG22 (Accession no. OP795826) and formed a heavy biofilm on the anode. At the end of the decolorization process, MG was added again for re-use of water. The results showed efficiency for re-use 3 times. To ensure the sterility of treated water for re-use, both UV and filter sterilization were used, the latter proved more efficient. The obtained results are promising, MFC can be used as recirculating aquaculture system (RAS). The same aquaculture water can be treated multiple times which provides a sustainable solution for water conservation.

          Graphical Abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12934-023-02152-9.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA.

          Using a set of synthetic oligonucleotides homologous to broadly conserved sequences in-vitro amplification via the polymerase chain reaction followed by direct sequencing results in almost complete nucleotide determination of a gene coding for 16S ribosomal RNA. As a model system the nucleotide sequence of the 16S rRNA gene of M.kansasii was determined and found to be 98.7% homologous to that of M.bovis BCG. This is the first report on a contiguous sequence information of an entire amplified gene spanning 1.5 kb without any subcloning procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxicological effects of malachite green.

            This review summarises the wide range of toxicological effects of malachite green (MG), a triarylmethane dye on various fish species and certain mammals. MG is widely used in aquaculture as a parasiticide and in food, health, textile and other industries for one or the other purposes. It controls fungal attacks, protozoan infections and some other diseases caused by helminths on a wide variety of fish and other aquatic organisms. However, the dye has generated much concern regarding its use, due to its reported toxic effects. The toxicity of this dye increases with exposure time, temperature and concentration. It has been reported to cause carcinogenesis, mutagenesis, chromosomal fractures, teratogenecity and respiratory toxicity. Histopathological effects of MG include multi-organ tissue injury. Significant alterations occur in biochemical parameters of blood in MG exposed fish. Residues of MG and its reduced form, leucomalachite green have been reported from serum, liver, kidney, muscles and other tissues as also from eggs and fry. Toxicity occurs in some mammals, including organ damage, mutagenic, carcinogenic and developmental abnormalities. However, despite the large amount of data on its toxic effects, MG is still used as a parasiticide in aquaculture and other industries. It is concluded that the potential of alternative parasiticides, like humic acid, chlorine dioxide and Pyceze, should be explored to replace MG. Until then, MG should be used with extreme care at suitable concentrations and at times when the temperature is low. Removal of residual MG in treatment ponds should also be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Aseptic Laboratory Techniques: Plating Methods

              Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
                Bookmark

                Author and article information

                Contributors
                ola_gomaa@hotmail.com
                Journal
                Microb Cell Fact
                Microb Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                1 August 2023
                1 August 2023
                2023
                : 22
                : 142
                Affiliations
                [1 ]GRID grid.7269.a, ISNI 0000 0004 0621 1570, Microbiology Department, Applied Biotechnology Section, Faculty of Science, , Ain Shams University, ; Cairo, Egypt
                [2 ]GRID grid.429648.5, ISNI 0000 0000 9052 0245, Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), , Egyptian Atomic Energy Authority (EAEA), ; Cairo, Egypt
                Article
                2152
                10.1186/s12934-023-02152-9
                10394906
                37528356
                21c8d637-6504-46d8-9614-3b15f895cd6c
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 1 March 2023
                : 17 July 2023
                Funding
                Funded by: Egyptian Atomic Energy Authority
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Biotechnology
                microbial fuel cell,malachite green,shewanella chilikensis,aquaculture,decolorization,recirculating aquaculture system (ras)

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content85

                Most referenced authors327