17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to evaluate the effect of the composition of CAD/CAM blocks on their mechanical properties. Nine different CAD/CAM blocks, enamel and dentine, were tested. Sixteen samples of each material were separated for Vickers microhardness test (n=6, 5 readings per specimen), nanohardness test (n=6, 5 readings per specimen), filler weight (n=3), and SEM imaging (n=1). Data were statistically analysed using one-way ANOVA. Vita Mark II ceramic showed significantly higher values of hardness (in both nano- and microscale) and elastic modulus (6.83 GPa, 502 kg/mm 2, and 47.7 GPa), respectively, than other materials. CAD/CAM composite blocks showed comparable values of hardness and elastic modulus to those of dentine but lower than those of enamel and ceramics. SEM images highlighted different filler-matrix microstructure of CAD/CAM composite blocks. It was concluded that (1) hardness and elastic moduli are positively correlated with ceramic filler percentage and microstructure and (2) CAD/CAM composite materials have comparable hardness and elastic moduli to tooth structure.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A method for interpreting the data from depth-sensing indentation instruments

          Depth-sensing indentation instruments provide a means for studying the elastic and plastic properties of thin films. A method for obtaining hardness and Young's modulus from the data obtained from these types of instruments is described. Elastic displacements are determined from the data obtained during unloading of the indentation. Young's modulus can be calculated from these measurements. In addition, the elastic contribution to the total displacement can be removed in order to calculate hardness. Determination of the exact shape of the indenter at the tip is critical to the measurement of both hardness and elastic modulus for indentation depths less than a micron. Hardness is shown to depend on strain rate, especially when the hardness values are calculated from the data along the loading curves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resin-composite blocks for dental CAD/CAM applications.

            Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical properties of resin-ceramic CAD/CAM restorative materials.

              The recent development of polymer-based computer-aided design and computer-aided manufactured (CAD/CAM) milling blocks and the limited availability of independent studies on these materials make it pertinent to evaluate their properties and identify potential strengths and limitations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                23 October 2018
                : 2018
                : 4893143
                Affiliations
                1School of Dentistry, The University of Manchester, Manchester, UK
                2Prosthodontic Department, University of Jordan, Amman, Jordan
                3Faculty of Dentistry, University of Kufa, Najaf, Iraq
                Author notes

                Academic Editor: Elena Landi

                Author information
                http://orcid.org/0000-0003-4576-4584
                Article
                10.1155/2018/4893143
                6218798
                30426009
                21784f37-be53-467b-8faa-191653d0d865
                Copyright © 2018 Rasha A. Alamoush et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 August 2018
                : 9 October 2018
                Categories
                Research Article

                Comments

                Comment on this article