53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72 -associated amyotrophic lateral sclerosis

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Science Translational Medicine
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

          A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing

            A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes. Electronic supplementary material The online version of this article (doi:10.1007/s00401-015-1450-z) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of toxicity in C9FTLD/ALS.

              A hexanucleotide repeat expansion within a non-coding region of the C9ORF72 gene is the most common mutation causative of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Elucidating how this bidirectionally transcribed G4C2·C4G2 expanded repeat causes "C9FTLD/ALS" has since become an important goal of the field. Likely pathogenic mechanisms include toxicity induced by repeat-containing RNAs, and loss of C9orf72 function due to epigenetic changes resulting in decreased C9ORF72 mRNA expression. With regards to the former, sense and antisense transcripts of the expanded repeat aberrantly interact with various RNA-binding proteins and form discrete nuclear structures, termed RNA foci. These foci have the capacity to sequester select RNA-binding proteins, thereby impairing their function. (G4C2)exp and (C4G2)exp transcripts also succumb to an alternative fate: repeat-associated non-ATG (RAN) translation. This unconventional mode of translation, which occurs in the absence of an initiating codon, results in the abnormal production of poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA) peptides, collectively referred to as C9RAN proteins. C9RAN proteins form neuronal inclusions throughout the central nervous system of C9FTLD/ALS patients and may contribute to disease pathogenesis. This review aims to summarize the important findings from studies examining mechanisms of disease in C9FTLD/ALS, and will also highlight some of the many questions in need of further investigation.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                March 29 2017
                March 29 2017
                : 9
                : 383
                : eaai7866
                Article
                10.1126/scitranslmed.aai7866
                5576451
                28356511
                2165b24e-3b60-4c75-9382-7dc1435aba4b
                © 2017
                History

                Comments

                Comment on this article