Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Capture and identification of proteins that bind to a GGA-rich sequence from the ERBB2 gene promoter region.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ERBB2 gene (HER2/neu) is overexpressed in many human breast cancers. It is an important therapeutic target and its product protein is a key biomarker for breast cancer. A 28-bp GGA repeat sequence (Pu28-mer) in the nuclease hypersensitive site of the ERBB2 promoter region may play an important role in the regulation of ERBB2 transcription, possibly involving the formation of a G-quadruplex. In order to investigate this possibility, an affinity MALDI-MS approach was used for in vitro protein capture from nuclear extracts from cultured MCF-7 and BT-474 cancer cells at Pu28-mer and control oligonucleotide-modified surfaces. Captured proteins from MCF-7 cells were analyzed by LC-MS/MS. Based on these results, Western blot was then used to interrogate captured proteins from both MCF-7 and the Her-2/neu-positive BT-474 cells. Results support the formation of a G-quadruplex by Pu28-mer, indicated by circular dichroism spectroscopy, that selectively captures transcription factors including Ku70, Ku80, PURA, nucleolin, and hnRNP K. Chromatin immunoprecipitation confirmed binding of Ku70, Ku80, PURA, and nucleolin to ERBB2 promoter in the live BT-474 cells. These findings may lead to a better understanding of the role of non-duplex DNA structures in gene regulation and provide a more complete picture of the regulation of ErbB2 expression in breast cancer. The results also provide a blueprint for development of "genome-inspired" aptamers based on the Pu28-mer sequence for in vitro and in vivo detection of proteins related to regulation of ERBB2 gene expression and breast cancer.

          Related collections

          Author and article information

          Journal
          Anal Bioanal Chem
          Analytical and bioanalytical chemistry
          Springer Nature
          1618-2650
          1618-2642
          Oct 2012
          : 404
          : 6-7
          Affiliations
          [1 ] Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
          Article
          10.1007/s00216-012-6322-y
          22899247
          210a5004-4148-4795-ad97-07ebf78df35d
          History

          Comments

          Comment on this article