15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the Oncogenic, Prognostic, and Immunological Role of BRIP1 in Pan-Cancer: A Comprehensive Data-Mining-Based Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S) helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown.

          Methods

          BRIP1 expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation (CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1 correlations with tumor microenvironment (TME), immune infiltration, immune-related genes, tumor mutation burden (TMB), microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer.

          Results

          Differential analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplification was the most common type. BRIP1 expression had a significant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, respectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infiltrating cells, immune-related genes, TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confirmed.

          Conclusions

          Our study indicates that BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-cancer.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene Ontology: tool for the unification of biology

            Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

              Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Oncol
                J Oncol
                jo
                Journal of Oncology
                Hindawi
                1687-8450
                1687-8469
                2023
                28 April 2023
                : 2023
                : 4104639
                Affiliations
                Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
                Author notes

                Academic Editor: Yanqing Liu

                Author information
                https://orcid.org/0000-0002-4926-5275
                https://orcid.org/0000-0002-9716-2772
                https://orcid.org/0000-0002-2761-100X
                https://orcid.org/0000-0001-8824-2175
                https://orcid.org/0000-0001-5321-457X
                https://orcid.org/0000-0003-1466-8450
                https://orcid.org/0000-0002-2907-7904
                Article
                10.1155/2023/4104639
                10162871
                2103b891-a945-4f96-9048-1a3c51b0e9d5
                Copyright © 2023 Yongru Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 November 2022
                : 14 February 2023
                : 8 April 2023
                Funding
                Funded by: Beijing Council of Science and Technology
                Award ID: Z181100001618013
                Funded by: National Key Clinical Specialty Discipline Construction Program of China
                Award ID: ZK108000
                Funded by: National High-Level Hospital Clinical Research Funding
                Award ID: 2022-PUMCH-B-024
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article