55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ocean acidification impairs olfactory discrimination and homing ability of a marine fish

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO(2)) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO(2)-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The impacts of climate change in coastal marine systems.

          Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local replenishment of coral reef fish populations in a marine reserve.

              The scale of larval dispersal of marine organisms is important for the design of networks of marine protected areas. We examined the fate of coral reef fish larvae produced at a small island reserve, using a mass-marking method based on maternal transmission of stable isotopes to offspring. Approximately 60% of settled juveniles were spawned at the island, for species with both short ( 1 month) pelagic larval durations. If natal homing of larvae is a common life-history strategy, the appropriate spatial scales for the management and conservation of coral reefs are likely to be much smaller than previously assumed.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 10 2009
                February 10 2009
                February 10 2009
                February 02 2009
                : 106
                : 6
                : 1848-1852
                Article
                10.1073/pnas.0809996106
                2644126
                19188596
                20ffc9dc-9aec-4bea-addf-75f5599f355a
                © 2009
                History

                Comments

                Comment on this article