9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process—the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants—devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: not found

          The chemokine system in diverse forms of macrophage activation and polarization.

          Plasticity and functional polarization are hallmarks of the mononuclear phagocyte system. Here we review emerging key properties of different forms of macrophage activation and polarization (M1, M2a, M2b, M2c), which represent extremes of a continuum. In particular, recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.

            In two of three phase 3 trials, pirfenidone, an oral antifibrotic therapy, reduced disease progression, as measured by the decline in forced vital capacity (FVC) or vital capacity, in patients with idiopathic pulmonary fibrosis; in the third trial, this end point was not achieved. We sought to confirm the beneficial effect of pirfenidone on disease progression in such patients. In this phase 3 study, we randomly assigned 555 patients with idiopathic pulmonary fibrosis to receive either oral pirfenidone (2403 mg per day) or placebo for 52 weeks. The primary end point was the change in FVC or death at week 52. Secondary end points were the 6-minute walk distance, progression-free survival, dyspnea, and death from any cause or from idiopathic pulmonary fibrosis. In the pirfenidone group, as compared with the placebo group, there was a relative reduction of 47.9% in the proportion of patients who had an absolute decline of 10 percentage points or more in the percentage of the predicted FVC or who died; there was also a relative increase of 132.5% in the proportion of patients with no decline in FVC (P<0.001). Pirfenidone reduced the decline in the 6-minute walk distance (P=0.04) and improved progression-free survival (P<0.001). There was no significant between-group difference in dyspnea scores (P=0.16) or in rates of death from any cause (P=0.10) or from idiopathic pulmonary fibrosis (P=0.23). However, in a prespecified pooled analysis incorporating results from two previous phase 3 trials, the between-group difference favoring pirfenidone was significant for death from any cause (P=0.01) and from idiopathic pulmonary fibrosis (P=0.006). Gastrointestinal and skin-related adverse events were more common in the pirfenidone group than in the placebo group but rarely led to treatment discontinuation. Pirfenidone, as compared with placebo, reduced disease progression, as reflected by lung function, exercise tolerance, and progression-free survival, in patients with idiopathic pulmonary fibrosis. Treatment was associated with an acceptable side-effect profile and fewer deaths. (Funded by InterMune; ASCEND ClinicalTrials.gov number, NCT01366209.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foreign body reaction to biomaterials.

              The foreign body reaction composed of macrophages and foreign body giant cells is the end-stage response of the inflammatory and wound healing responses following implantation of a medical device, prosthesis, or biomaterial. A brief, focused overview of events leading to the foreign body reaction is presented. The major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events. These events in the foreign body reaction include protein adsorption, monocyte/macrophage adhesion, macrophage fusion to form foreign body giant cells, consequences of the foreign body response on biomaterials, and cross-talk between macrophages/foreign body giant cells and inflammatory/wound healing cells. Biomaterial surface properties play an important role in modulating the foreign body reaction in the first two to four weeks following implantation of a medical device, even though the foreign body reaction at the tissue/material interface is present for the in vivo lifetime of the medical device. An understanding of the foreign body reaction is important as the foreign body reaction may impact the biocompatibility (safety) of the medical device, prosthesis, or implanted biomaterial and may significantly impact short- and long-term tissue responses with tissue-engineered constructs containing proteins, cells, and other biological components for use in tissue engineering and regenerative medicine. Our perspective has been on the inflammatory and wound healing response to implanted materials, devices, and tissue-engineered constructs. The incorporation of biological components of allogeneic or xenogeneic origin as well as stem cells into tissue-engineered or regenerative approaches opens up a myriad of other challenges. An in depth understanding of how the immune system interacts with these cells and how biomaterials or tissue-engineered constructs influence these interactions may prove pivotal to the safety, biocompatibility, and function of the device or system under consideration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                15 April 2021
                2021
                : 9
                : 622524
                Affiliations
                [1] 1Electrical Engineering Division, Department of Engineering, University of Cambridge , Cambridge, United Kingdom
                [2] 2Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
                Author notes

                Edited by: Elisa Castagnola, University of Pittsburgh, United States

                Reviewed by: Jennifer Patterson, Instituto IMDEA Materiales, Spain; PaYaM ZarrinTaj, Oklahoma State University, United States

                *Correspondence: George G. Malliaras gm603@ 123456cam.ac.uk
                Damiano G. Barone dgb36@ 123456cam.ac.uk

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2021.622524
                8081831
                33937212
                20fed973-4385-4dc8-bc92-29bf13d25f97
                Copyright © 2021 Carnicer-Lombarte, Chen, Malliaras and Barone.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 October 2020
                : 19 March 2021
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 175, Pages: 22, Words: 18084
                Funding
                Funded by: Engineering and Physical Sciences Research Council 10.13039/501100000266
                Funded by: Wellcome Trust 10.13039/100010269
                Funded by: Cambridge Trust 10.13039/501100003343
                Categories
                Bioengineering and Biotechnology
                Systematic Review

                foreign body reaction,nerve neuroprosthetics,neural implants,neural interface,peripheral nerve stimulation,biocompatibility

                Comments

                Comment on this article