43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning, Clustering, and Polymorphy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes a machine induction program (WITT) that attempts to model human categorization. Properties of categories to which human subjects are sensitive includes best or prototypical members, relative contrasts between putative categories, and polymorphy (neither necessary or sufficient features). This approach represents an alternative to usual Artificial Intelligence approaches to generalization and conceptual clustering which tend to focus on necessary and sufficient feature rules, equivalence classes, and simple search and match schemes. WITT is shown to be more consistent with human categorization while potentially including results produced by more traditional clustering schemes. Applications of this approach in the domains of expert systems and information retrieval are also discussed.

          Related collections

          Author and article information

          Journal
          1304.3432

          Theoretical computer science,Artificial intelligence
          Theoretical computer science, Artificial intelligence

          Comments

          Comment on this article