3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mushroom Detection and Three Dimensional Pose Estimation from Multi-View Point Clouds

      , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agricultural robotics is an up and coming field which deals with the development of robotic systems able to tackle a multitude of agricultural tasks efficiently. The case of interest, in this work, is mushroom collection in industrial mushroom farms. Developing such a robot, able to select and out-root a mushroom, requires delicate actions that can only be conducted if a well-performing perception module exists. Specifically, one should accurately detect the 3D pose of a mushroom in order to facilitate the smooth operation of the robotic system. In this work, we develop a vision module for 3D pose estimation of mushrooms from multi-view point clouds using multiple RealSense active–stereo cameras. The main challenge is the lack of annotation data, since 3D annotation is practically infeasible on a large scale. To address this, we developed a novel pipeline for mushroom instance segmentation and template matching, where a 3D model of a mushroom is the only data available. We evaluated, quantitatively, our approach over a synthetic dataset of mushroom scenes, and we, further, validated, qualitatively, the effectiveness of our method over a set of real data, collected by different vision settings.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global geometric framework for nonlinear dimensionality reduction.

            Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Fast Point Feature Histograms (FPFH) for 3D registration

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                April 2023
                March 29 2023
                : 23
                : 7
                : 3576
                Article
                10.3390/s23073576
                20866f22-9422-4fca-99b4-7e650162585d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article