4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on the Use of Microalgae for Sustainable Aquaculture

      , , ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditional aquaculture provides food for humans, but produces a large amount of wastewater, threatening global sustainability. The antibiotics abuse and the water replacement or treatment causes safety problems and increases the aquaculture cost. To overcome environmental and economic problems in the aquaculture industry, a lot of efforts have been devoted into the application of microalgae for wastewater remediation, biomass production, and water quality control. In this review, the systematic description of the technologies required for microalgae-assisted aquaculture and the recent progress were discussed. It deeply reviews the problems caused by the discharge of aquaculture wastewater and introduces the principles of microalgae-assisted aquaculture. Some interesting aspects, including nutrients assimilation mechanisms, algae cultivation systems (raceway pond and revolving algal biofilm), wastewater pretreatment, algal-bacterial cooperation, harvesting technologies (fungi-assisted harvesting and flotation), selection of algal species, and exploitation of value-added microalgae as aquaculture feed, were reviewed in this work. In view of the limitations of recent studies, to further reduce the negative effects of aquaculture wastewater on global sustainability, the future directions of microalgae-assisted aquaculture for industrial applications were suggested.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Harmful cyanobacterial blooms: causes, consequences, and controls.

          Cyanobacteria are the Earth's oldest oxygenic photoautotrophs and have had major impacts on shaping its biosphere. Their long evolutionary history (≈ 3.5 by) has enabled them to adapt to geochemical and climatic changes, and more recently anthropogenic modifications of aquatic environments, including nutrient over-enrichment (eutrophication), water diversions, withdrawals, and salinization. Many cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence global warming plays a key role in their expansion and persistence. Bloom-forming cyanobacterial taxa can be harmful from environmental, organismal, and human health perspectives by outcompeting beneficial phytoplankton, depleting oxygen upon bloom senescence, and producing a variety of toxic secondary metabolites (e.g., cyanotoxins). How environmental factors impact cyanotoxin production is the subject of ongoing research, but nutrient (N, P and trace metals) supply rates, light, temperature, oxidative stressors, interactions with other biota (bacteria, viruses and animal grazers), and most likely, the combined effects of these factors are all involved. Accordingly, strategies aimed at controlling and mitigating harmful blooms have focused on manipulating these dynamic factors. The applicability and feasibility of various controls and management approaches is discussed for natural waters and drinking water supplies. Strategies based on physical, chemical, and biological manipulations of specific factors show promise; however, a key underlying approach that should be considered in almost all instances is nutrient (both N and P) input reductions; which have been shown to effectively reduce cyanobacterial biomass, and therefore limit health risks and frequencies of hypoxic events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Algae acquire vitamin B12 through a symbiotic relationship with bacteria.

            Vitamin B12 (cobalamin) was identified nearly 80 years ago as the anti-pernicious anaemia factor in liver, and its importance in human health and disease has resulted in much work on its uptake, cellular transport and utilization. Plants do not contain cobalamin because they have no cobalamin-dependent enzymes. Deficiencies are therefore common in strict vegetarians, and in the elderly, who are susceptible to an autoimmune disorder that prevents its efficient uptake. In contrast, many algae are rich in vitamin B12, with some species, such as Porphyra yezoensis (Nori), containing as much cobalamin as liver. Despite this, the role of the cofactor in algal metabolism remains unknown, as does the source of the vitamin for these organisms. A survey of 326 algal species revealed that 171 species require exogenous vitamin B12 for growth, implying that more than half of the algal kingdom are cobalamin auxotrophs. Here we show that the role of vitamin B12 in algal metabolism is primarily as a cofactor for vitamin B12-dependent methionine synthase, and that cobalamin auxotrophy has arisen numerous times throughout evolution, probably owing to the loss of the vitamin B12-independent form of the enzyme. The source of cobalamin seems to be bacteria, indicating an important and unsuspected symbiosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infectious diseases affect marine fisheries and aquaculture economics.

              Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.
                Bookmark

                Author and article information

                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                June 2019
                June 11 2019
                : 9
                : 11
                : 2377
                Article
                10.3390/app9112377
                20773ed2-da14-4e28-8063-902cf283fc07
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article