108
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evolutionary expansion of the neocortex in mammals has been linked to enlargement of the subventricular zone (SVZ) and increased proliferative capacity of basal progenitors (BPs), notably basal radial glia (bRG). The transcription factor Pax6 is known to be highly expressed in primate, but not mouse, BPs. Here, we demonstrate that sustaining Pax6 expression selectively in BP-genic apical radial glia (aRG) and their BP progeny of embryonic mouse neocortex suffices to induce primate-like progenitor behaviour. Specifically, we conditionally expressed Pax6 by in utero electroporation using a novel, Tis21–CreER T2 mouse line. This expression altered aRG cleavage plane orientation to promote bRG generation, increased cell-cycle re-entry of BPs, and ultimately increased upper-layer neuron production. Upper-layer neuron production was also increased in double-transgenic mouse embryos with sustained Pax6 expression in the neurogenic lineage. Strikingly, increased BPs existed not only in the SVZ but also in the intermediate zone of the neocortex of these double-transgenic mouse embryos. In mutant mouse embryos lacking functional Pax6, the proportion of bRG among BPs was reduced. Our data identify specific Pax6 effects in BPs and imply that sustaining this Pax6 function in BPs could be a key aspect of SVZ enlargement and, consequently, the evolutionary expansion of the neocortex.

          Abstract

          "Humanizing" the expression of the transcription factor Pax6 in cortical progenitors in the developing mouse brain is sufficient to endow these progenitors with a primate-like proliferative capacity.

          Author Summary

          During development, neural progenitors generate all cells that make up the mammalian brain. Differences in brain size among the various mammalian species are attributed to differences in the abundance and proliferative capacity of a specific class of neural progenitors called basal progenitors. Among these, a specific progenitor type called basal radial glia is thought to have played an important role during evolution in the expansion of the neocortex, the part of the brain associated with higher cognitive functions like conscious thought and language. In the neocortex, the expression of the transcription factor Pax6 in basal progenitors is low in rodents, but high in primates, including humans. In this study, we aimed to mimic the elevated expression pattern of Pax6 seen in humans in basal progenitors of the embryonic mouse neocortex. To this end, we generated a novel, transgenic mouse line that allows sustained expression of the Pax6 gene in basal progenitors. This elevated expression resulted in an increase in the generation of basal radial glia, in the proliferative capacity of basal progenitors, and, ultimately, in the number of neurons produced. Our findings demonstrate that altering the expression of a single transcription factor from a mouse to a human-like pattern suffices to induce a primate-like proliferative behaviour in neural progenitors, which is thought to underlie the evolutionary expansion of the neocortex.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          The complete genome sequence of a Neandertal from the Altai Mountains

          We present a high-quality genome sequence of a Neandertal woman from Siberia. We show that her parents were related at the level of half siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neandertal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neandertals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high quality Neandertal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neandertals and Denisovans.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The cell biology of neurogenesis.

            During the development of the mammalian central nervous system, neural stem cells and their derivative progenitor cells generate neurons by asymmetric and symmetric divisions. The proliferation versus differentiation of these cells and the type of division are closely linked to their epithelial characteristics, notably, their apical-basal polarity and cell-cycle length. Here, we discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal subtype specification in the cerebral cortex.

              In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                7 August 2015
                August 2015
                : 13
                : 8
                : e1002217
                Affiliations
                [1 ]Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
                [2 ]Biotechnology Center of the Technische Universität Dresden, Dresden, Germany
                CAS-MPG Partner Institute for Computational Biology, CHINA
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FKW JFF WBH. Performed the experiments: FKW JFF FMB CH. Analyzed the data: FKW JFF FMB ET. Contributed reagents/materials/analysis tools: JF KA AFS. Wrote the paper: FKW JFF WBH. Day-to-day supervision of FKW: ET. Supervised the project: WBH.

                [¤]

                Current Address: Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany

                Article
                PBIOLOGY-D-14-04215
                10.1371/journal.pbio.1002217
                4529158
                26252244
                20636a9d-4564-488e-898e-5570cc02b445
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 4 December 2014
                : 30 June 2015
                Page count
                Figures: 11, Tables: 0, Pages: 44
                Funding
                WBH was supported by grants from the DFG (SFB 655, A2) and the ERC (250197), by the DFG-funded Center for Regenerative Therapies Dresden, and by the Fonds der Chemischen Industrie. FKW was a member of the International Max Planck Research School for Cell, Developmental and Systems Biology and a doctoral student at the Technische Universität Dresden. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Life sciences
                Life sciences

                Comments

                Comment on this article