5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Potential role of cell wall pectin polysaccharides, water state, and cellular structure on twice “increase–decrease” texture changes during kohlrabi pickling process

      , , , , , , , ,
      Food Research International

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs)

            Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant glycoside hydrolases involved in cell wall polysaccharide degradation.

              The cell wall plays a key role in controlling the size and shape of the plant cell during plant development and in the interactions of the plant with its environment. The cell wall structure is complex and contains various components such as polysaccharides, lignin and proteins whose composition and concentration change during plant development and growth. Many studies have revealed changes in cell walls which occur during cell division, expansion, and differentiation and in response to environmental stresses; i.e. pathogens or mechanical stress. Although many proteins and enzymes are necessary for the control of cell wall organization, little information is available concerning them. An important advance was made recently concerning cell wall organization as plant enzymes that belong to the superfamily of glycoside hydrolases and transglycosidases were identified and characterized; these enzymes are involved in the degradation of cell wall polysaccharides. Glycoside hydrolases have been characterized using molecular, genetic and biochemical approaches. Many genes encoding these enzymes have been identified and functional analysis of some of them has been performed. This review summarizes our current knowledge about plant glycoside hydrolases that participate in the degradation and reorganisation of cell wall polysaccharides in plants focussing particularly on those from Arabidopsis thaliana.
                Bookmark

                Author and article information

                Journal
                Food Research International
                Food Research International
                09639969
                November 2023
                November 2023
                : 173
                : 113308
                Article
                10.1016/j.foodres.2023.113308
                37803613
                205f1a54-4de1-40e4-85c3-4f1d2244c94c
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,994

                Cited by4

                Most referenced authors775