Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biotechnological recovery of uranium (VI) from Abu Zeneima spent ore residue using green lixiviant

      Journal of Radioanalytical and Nuclear Chemistry
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Promising green leaching technique was used by Humic acid (HA) for removing uranium from Abu Zeneima spent residue for environmental safety and cost-effective leaching. The studied residue is outlet from vat leaching process using sulfuric acid leaching of carbonaceous shale ore material with initial uranium assays 185 ppm, which representing a hazardous waste. The overall leaching efficiency assaying 93% of uranium using humic acid leaching at curing temperature 70 °C, 13% HA with S/L ratio of 1/1.5 for 15 day. Kinetic study of leaching process proved diffusion controlling mechanism with activated energy 10.297 kJ/mol. Finally; 98% of uranium was extracted using Amberlite IRA- 400 resin with purity of 97.3%.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemical Reaction Engineering

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Organic acid behavior in soils – misconceptions and knowledge gaps

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Humic acids: Structural properties and multiple functionalities for novel technological developments.

              Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach.
                Bookmark

                Author and article information

                Journal
                Journal of Radioanalytical and Nuclear Chemistry
                J Radioanal Nucl Chem
                Springer Science and Business Media LLC
                0236-5731
                1588-2780
                June 2022
                April 18 2022
                June 2022
                : 331
                : 6
                : 2503-2513
                Article
                10.1007/s10967-022-08249-6
                204547f9-7ccf-4f42-a2a6-74a91cbde80f
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article