9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Dietary Leucine Supplementation on Antioxidant Capacity and Meat Quality of Finishing Pigs under Heat Stress

      , , , , , , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined the effects of dietary leucine supplements on antioxidant capacity and meat quality in growing-finishing pigs. A total of 24 crossbred (Duroc × Landrace × Yorkshire) pigs with an average initial weight of 68.33 ± 0.97 kg were randomly allotted to three treatment groups. All pigs were exposed to constant heat stress. Each group of pigs was fed a basal diet, or a diet supplemented with increasing levels of leucine (0.25% or 0.50%). The results showed that leucine intake could improve average daily gain and reduce feed/gain of finishing pigs under heat stress (p < 0.05). The supplementation of leucine could improve the carcass slant length (p = 0.09), and dramatically increased loin-eye area of the finishing pigs (p < 0.05) but had no significant effect on other carcass traits. Compared with the control group, 0.50% leucine markedly reduced drip loss and shear force of longissimus dorsi muscle, and increased pH value at 24 h after slaughter (p < 0.05). Dietary supplementation of 0.25% leucine increased the contents of inosine monophosphate and intramuscular fat in biceps femoris muscle (p < 0.05). Supplementation of 0.25% or 0.50% leucine significantly stimulated the activities of antioxidant enzymes while reduced the level of MDA in serum, liver and longissimus dorsi muscle (p < 0.05). Compared with the control group, 0.50% leucine supplementation markedly modulated the relative mRNA expression levels of genes related to muscle fiber type and mitochondrial function in longissimus dorsi muscle and the gene relative antioxidant in the liver (p < 0.05). In conclusion, dietary leucine supplementation could improve the growth performance and meat quality of the finishing pigs under heat stress, and the pathway of Keap1-NRF2 and PGC-1α-TFAM might be involved.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fat deposition, fatty acid composition and meat quality: A review.

            This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time for forage diets also limits the amount available for tissue uptake compared with 18:2n-6 from concentrate diets. A positive feature of grass feeding is that levels of the nutritionally important long chain n-3 PUFA are increased ie EPA (20:5n-3) and DHA (22:6n-3). Future research should focus on increasing n-3 PUFA proportions in lean carcasses and the use of biodiverse pastures and conservation processes which retain the benefits of fresh leafy grass offer opportunities to achieve this. The varying fatty acid compositions of adipose tissue and muscle have profound effects on meat quality. Fatty acid composition determines the firmness/oiliness of adipose tissue and the oxidative stability of muscle, which in turn affects flavour and muscle colour. Vitamin E is an essential nutrient, which stabilises PUFA and has a central role in meat quality, particularly in ruminants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.

              PPARgamma coactivator 1alpha (PGC-1alpha) is a potent stimulator of mitochondrial biogenesis and respiration. Since the mitochondrial electron transport chain is the main producer of reactive oxygen species (ROS) in most cells, we examined the effect of PGC-1alpha on the metabolism of ROS. PGC-1alpha is coinduced with several key ROS-detoxifying enzymes upon treatment of cells with an oxidative stressor; studies with RNAi or null cells indicate that PGC-1alpha is required for the induction of many ROS-detoxifying enzymes, including GPx1 and SOD2. PGC-1alpha null mice are much more sensitive to the neurodegenerative effects of MPTP and kainic acid, oxidative stressors affecting the substantia nigra and hippocampus, respectively. Increasing PGC-1alpha levels dramatically protects neural cells in culture from oxidative-stressor-mediated death. These studies reveal that PGC-1alpha is a broad and powerful regulator of ROS metabolism, providing a potential target for the therapeutic manipulation of these important endogenous toxins.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                July 2022
                July 15 2022
                : 11
                : 7
                : 1373
                Article
                10.3390/antiox11071373
                9312205
                35883864
                203f4299-068b-40e8-9ccf-95c02c64fdfb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article