13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tracking cancer progression: from circulating tumor cells to metastasis

      review-article
      1 , 2 , 1 ,
      Genome Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Circulating tumor cells: liquid biopsy of cancer.

          The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include (a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information), (b) stratification and real-time monitoring of therapies, (c) identification of therapeutic targets and resistance mechanisms, and (d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular-characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC-detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice. © 2012 American Association for Clinical Chemistry
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Liquid biopsy and minimal residual disease — latest advances and implications for cure

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AACR centennial series: the biology of cancer metastasis: historical perspective.

              Metastasis resistant to therapy is the major cause of death from cancer. Despite almost 200 years of study, the process of tumor metastasis remains controversial. Stephen Paget initially identified the role of host-tumor interactions on the basis of a review of autopsy records. His "seed and soil" hypothesis was substantiated a century later with experimental studies, and numerous reports have confirmed these seminal observations. An improved understanding of the metastatic process and the attributes of the cells selected by this process is critical for the treatment of patients with systemic disease. In many patients, metastasis has occurred by the time of diagnosis, so metastasis prevention may not be relevant. Treating systemic disease and identifying patients with early disease should be our goal. Revitalized research in the past three decades has focused on new discoveries in the biology of metastasis. Even though our understanding of molecular events that regulate metastasis has improved, the contributions and timing of molecular lesion(s) involved in metastasis pathogenesis remain unclear. Review of the history of pioneering observations and discussion of current controversies should increase understanding of the complex and multifactorial interactions between the host and selected tumor cells that contribute to fatal metastasis and should lead to the design of successful therapy. (c)2010 AACR.
                Bookmark

                Author and article information

                Contributors
                Nicola.Aceto@unibas.ch
                Journal
                Genome Med
                Genome Med
                Genome Medicine
                BioMed Central (London )
                1756-994X
                19 March 2020
                19 March 2020
                2020
                : 12
                : 31
                Affiliations
                [1 ]GRID grid.6612.3, ISNI 0000 0004 1937 0642, Department of Biomedicine, Cancer Metastasis Laboratory, , University of Basel and University Hospital Basel, ; 4058 Basel, Switzerland
                [2 ]GRID grid.419765.8, ISNI 0000 0001 2223 3006, Swiss Institute of Bioinformatics, ; 1015 Lausanne, Switzerland
                Article
                728
                10.1186/s13073-020-00728-3
                7082968
                32192534
                203ec8b1-557d-4a68-bdbe-4ca90293cd79
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 November 2019
                : 9 March 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article