43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA.

          Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilm formation: a clinically relevant microbiological process.

            Microorganisms universally attach to surfaces and produce extracellular polysaccharides, resulting in the formation of a biofilm. Biofilms pose a serious problem for public health because of the increased resistance of biofilm-associated organisms to antimicrobial agents and the potential for these organisms to cause infections in patients with indwelling medical devices. An appreciation of the role of biofilms in infection should enhance the clinical decision-making process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The changing epidemiology of Staphylococcus aureus?

              H Chambers (2001)
              Strains of methicillin-resistant Staphylococcus aureus (MRSA), which had been largely confined to hospitals and long-term care facilities, are emerging in the community. The changing epidemiology of MRSA bears striking similarity to the emergence of penicillinase-mediated resistance in S. aureus decades ago. Even though the origin (hospital or the community) of the emerging MRSA strains is not known, the prevalence of these strains in the community seems likely to increase substantially.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                19 June 2018
                June 2018
                : 10
                : 6
                : 252
                Affiliations
                LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; dianarosalopesoliveira@ 123456gmail.com (D.O.); apborges@ 123456utad.pt (A.B.)
                Author notes
                [* ]Correspondence: mvs@ 123456fe.up.pt
                Author information
                https://orcid.org/0000-0001-9409-3276
                https://orcid.org/0000-0001-6929-6805
                https://orcid.org/0000-0002-3355-4398
                Article
                toxins-10-00252
                10.3390/toxins10060252
                6024779
                29921792
                2023f513-b430-4641-987a-3847f11ab1cf
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2018
                : 15 June 2018
                Categories
                Review

                Molecular medicine
                biofilms,epidemiology,exfoliative toxins,pore-forming toxins,staphylococcus aureus,superantigens

                Comments

                Comment on this article