86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia.

          Despite extensive laboratory investigations in patients with respiratory tract infections, no microbiological cause can be identified in a significant proportion of patients. In the past 3 years, several novel respiratory viruses, including human metapneumovirus, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and human coronavirus NL63, were discovered. Here we report the discovery of another novel coronavirus, coronavirus HKU1 (CoV-HKU1), from a 71-year-old man with pneumonia who had just returned from Shenzhen, China. Quantitative reverse transcription-PCR showed that the amount of CoV-HKU1 RNA was 8.5 to 9.6 x 10(6) copies per ml in his nasopharyngeal aspirates (NPAs) during the first week of the illness and dropped progressively to undetectable levels in subsequent weeks. He developed increasing serum levels of specific antibodies against the recombinant nucleocapsid protein of CoV-HKU1, with immunoglobulin M (IgM) titers of 1:20, 1:40, and 1:80 and IgG titers of <1:1,000, 1:2,000, and 1:8,000 in the first, second and fourth weeks of the illness, respectively. Isolation of the virus by using various cell lines, mixed neuron-glia culture, and intracerebral inoculation of suckling mice was unsuccessful. The complete genome sequence of CoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA, with G+C content of 32%, the lowest among all known coronaviruses with available genome sequence. Phylogenetic analysis reveals that CoV-HKU1 is a new group 2 coronavirus. Screening of 400 NPAs, negative for SARS-CoV, from patients with respiratory illness during the SARS period identified the presence of CoV-HKU1 RNA in an additional specimen, with a viral load of 1.13 x 10(6) copies per ml, from a 35-year-old woman with pneumonia. Our data support the existence of a novel group 2 coronavirus associated with pneumonia in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microfluidic diagnostic technologies for global public health.

            The developing world does not have access to many of the best medical diagnostic technologies; they were designed for air-conditioned laboratories, refrigerated storage of chemicals, a constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples. Microfluidic systems allow miniaturization and integration of complex functions, which could move sophisticated diagnostic tools out of the developed-world laboratory. These systems must be inexpensive, but also accurate, reliable, rugged and well suited to the medical and social contexts of the developing world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution genotyping by amplicon melting analysis using LCGreen.

              High-resolution amplicon melting analysis was recently introduced as a closed-tube method for genotyping and mutation scanning (Gundry et al. Clin Chem 2003;49:396-406). The technique required a fluorescently labeled primer and was limited to the detection of mutations residing in the melting domain of the labeled primer. Our aim was to develop a closed-tube system for genotyping and mutation scanning that did not require labeled oligonucleotides. We studied polymorphisms in the hydroxytryptamine receptor 2A (HTR2A) gene (T102C), beta-globin (hemoglobins S and C) gene, and cystic fibrosis (F508del, F508C, I507del) gene. PCR was performed in the presence of the double-stranded DNA dye LCGreen, and high-resolution amplicon melting curves were obtained. After fluorescence normalization, temperature adjustment, and/or difference analysis, sequence alterations were distinguished by curve shape and/or position. Heterozygous DNA was identified by the low-temperature melting of heteroduplexes not observed with other dyes commonly used in real-time PCR. The six common beta-globin genotypes (AA, AS, AC, SS, CC, and SC) were all distinguished in a 110-bp amplicon. The HTR2A single-nucleotide polymorphism was genotyped in a 544-bp fragment that split into two melting domains. Because melting curve acquisition required only 1-2 min, amplification and analysis were achieved in 10-20 min with rapid cycling conditions. High-resolution melting analysis of PCR products amplified in the presence of LCGreen can identify both heterozygous and homozygous sequence variants. The technique requires only the usual unlabeled primers and a generic double-stranded DNA dye added before PCR for amplicon genotyping, and is a promising method for mutation screening.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 October 2011
                : 6
                : 10
                : e26047
                Affiliations
                [1 ]Idaho Technology, Inc., Salt Lake City, Utah, United States of America
                [2 ]Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
                [3 ]Primary Children's Medical Center and Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
                University Hospital San Giovanni Battista di Torino, Italy
                Author notes

                Conceived and designed the experiments: MAP AJB CLB LM KN DEJ SAT BL EA AH JD SFD DH-FT KMR. Performed the experiments: MAP LM KN DEJ SAT KMR. Analyzed the data: MAP AJB CLB LM DEJ SAT TR BL EA AH JD DH-FT KMR. Contributed reagents/materials/analysis tools: JD CLB TR. Wrote the paper: MAP AJB CLB TR.

                [¤a]

                Current address: Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America

                [¤b]

                Current address: MolecularMD, Portland, Oregon, United States of America

                Article
                PONE-D-11-14480
                10.1371/journal.pone.0026047
                3198457
                22039434
                20169761-6f0c-41ab-b6fe-70267ee5594c
                Poritz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 July 2011
                : 16 September 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Medical Devices
                Applied Microbiology
                Microbiology
                Virology
                Co-Infections
                Viral Disease Diagnosis
                Bacterial Pathogens
                Emerging Infectious Diseases
                Microbial Pathogens
                Medicine
                Diagnostic Medicine
                Pathology
                Clinical Pathology
                Clinical Microbiology
                Molecular Genetics
                Test Evaluation
                Infectious Diseases
                Bacterial Diseases
                Bacterial Pneumonia
                Viral Diseases
                Common Cold
                Human Bocavirus Infection
                Human Metapneumovirus Infection
                Human Parainfluenza Virus Infection
                Influenza
                Respiratory Syncytial Virus Infection
                Rhinovirus Infection

                Uncategorized
                Uncategorized

                Comments

                Comment on this article