5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of feeding Saccharomyces cerevisiae fermentation postbiotic on the fecal microbial community of Holstein dairy calves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age. Calves (n = 60) were separated into two treatments: CON (no SCFP added) or SCFP (SmartCare®, Diamond V, Cedar Rapids, IA, in milk replacer and NutriTek®, Diamond V, Cedar Rapids, IA, incorporated into feed), and were blocked by body weight and serum total protein. Fecal samples were collected on d 0, 28, 56, 84, and 112 of the study to characterize the fecal microbiome community. Data were analyzed as a completely randomized block design with repeated measures when applicable. A random-forest regression method was implemented to more fully understand community succession in the calf fecal microbiome of the two treatment groups.

          Results

          Richness and evenness of the fecal microbiota increased over time ( P < 0.001), and SCFP calves tended to increase the evenness of the community ( P = 0.06). Based on random-forest regression, calf age as predicted by microbiome composition was significantly correlated with the calf physiological age (R 2 = 0.927, P < 1 × 10 −15). Twenty-two “age-discriminatory” ASVs (amplicon sequence variants) were identified in the fecal microbiome that were shared between the two treatment groups. Of these, 6 ASVs ( Dorea-ASV308, Lachnospiraceae-ASV288, Oscillospira-ASV311, Roseburia-ASV228, Ruminococcaceae-ASV89 and Ruminoccocaceae-ASV13) in the SCFP group reached their highest abundance in the third month, but they reached their highest abundance in the fourth month in the CON group. All other shared ASVs reached their highest abundance at the same timepoint in both treatment groups.

          Conclusions

          Supplementation of SCFP altered the abundance dynamics of age discriminatory ASVs, suggesting a faster maturation of some members of the fecal microbiota in SCFP calves compared to CON calves. These results demonstrate the value of analyzing microbial community succession as a continuous variable to identify the effects of a dietary treatment.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s42523-023-00234-y.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB

            A 16S rRNA gene database ( http://greengenes.lbl.gov ) addresses limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.

              Rapid advances in sequencing technology have changed the experimental landscape of microbial ecology. In the last 10 years, the field has moved from sequencing hundreds of 16S rRNA gene fragments per study using clone libraries to the sequencing of millions of fragments per study using next-generation sequencing technologies from 454 and Illumina. As these technologies advance, it is critical to assess the strengths, weaknesses, and overall suitability of these platforms for the interrogation of microbial communities. Here, we present an improved method for sequencing variable regions within the 16S rRNA gene using Illumina's MiSeq platform, which is currently capable of producing paired 250-nucleotide reads. We evaluated three overlapping regions of the 16S rRNA gene that vary in length (i.e., V34, V4, and V45) by resequencing a mock community and natural samples from human feces, mouse feces, and soil. By titrating the concentration of 16S rRNA gene amplicons applied to the flow cell and using a quality score-based approach to correct discrepancies between reads used to construct contigs, we were able to reduce error rates by as much as two orders of magnitude. Finally, we reprocessed samples from a previous study to demonstrate that large numbers of samples could be multiplexed and sequenced in parallel with shotgun metagenomes. These analyses demonstrate that our approach can provide data that are at least as good as that generated by the 454 platform while providing considerably higher sequencing coverage for a fraction of the cost.
                Bookmark

                Author and article information

                Contributors
                john2185@purdue.edu
                Journal
                Anim Microbiome
                Anim Microbiome
                Animal Microbiome
                BioMed Central (London )
                2524-4671
                19 February 2023
                19 February 2023
                2023
                : 5
                : 13
                Affiliations
                [1 ]GRID grid.169077.e, ISNI 0000 0004 1937 2197, Department of Animal Science, , Purdue University, ; 270 S Russell St., West Lafayette, IN USA
                [2 ]GRID grid.486943.4, ISNI 0000 0004 0638 9395, Diamond V, ; Cedar Rapids, IA USA
                Article
                234
                10.1186/s42523-023-00234-y
                9938967
                1fc6da7b-c5c4-4776-aaf3-12e264d0ff96
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 June 2022
                : 10 February 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010910, Diamond V;
                Categories
                Brief Report
                Custom metadata
                © The Author(s) 2023

                calf,fecal microbiome,maturation,saccharomyces cerevisiae fermentation product

                Comments

                Comment on this article