0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Systemic delivery of murine SOD2 mRNA to experimental abdominal aortic aneurysm mitigates expansion and rupture

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Oxidative stress is implicated in the pathogenesis and progression of abdominal aortic aneurysm (AAA). Antioxidant delivery as a therapeutic for AAA is of substantial interest although clinical translation of antioxidant therapy has met with significant challenges due to limitations in achieving sufficient antioxidant levels at the site of AAA. We posit that nanoparticle-based approaches hold promise to overcome challenges associated with systemic administration of antioxidants.

          Methods

          We employed a peptide-based nanoplatform to overexpress a key modulator of oxidative stress, superoxide dismutase 2 (SOD2). The efficacy of systemic delivery of SOD2 mRNA as a nanotherapeutic agent was studied in two different murine AAA models. Unbiased mass spectrometry-enabled proteomics and high-dimensional bioinformatics were used to examine pathways modulated by SOD2 overexpression.

          Results

          The murine SOD2 mRNA sequence was mixed with p5RHH, an amphipathic peptide capable of delivering nucleic acids in vivoto form self-assembled nanoparticles of ∼55 nm in diameter. We further demonstrated that the nanoparticle was stable and functional up to four weeks following self-assembly when coated with hyaluronic acid. Delivery of SOD2 mRNA mitigated the expansion of small AAA and largely prevented rupture. Mitigation of AAA was accompanied by enhanced SOD2 protein expression in aortic wall tissue. Concomitant suppression of nitric oxide, inducible nitric oxide synthase expression, and cell death was observed. Proteomic profiling of AAA tissues suggests that SOD2 overexpression augments levels of microRNAs that regulate vascular inflammation and cell apoptosis, inhibits platelet activation/aggregation, and downregulates mitogen-activated protein kinase signaling. Gene set enrichment analysis shows that SOD2 mRNA delivery is associated with activation of oxidative phosphorylation, lipid metabolism, respiratory electron transportation, and tricarboxylic acid cycle pathways.

          Conclusions

          These results confirm that SOD2 is key modulator of oxidative stress in AAA. This nanotherapeutic mRNA delivery approach may find translational application in the medical management of small AAA and the prevention of AAA rupture.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          Journal
          bioRxiv
          June 18 2024
          Article
          10.1101/2024.06.17.599454
          1fbcece5-2cce-4b24-a87a-0cec3d00b6cd
          © 2024
          History

          Cell biology,Comparative biology
          Cell biology, Comparative biology

          Comments

          Comment on this article