10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inorganic perovskite photocatalysts for solar energy utilization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review specifically summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation.

          Abstract

          The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

          Related collections

          Most cited references384

          • Record: found
          • Abstract: found
          • Article: not found

          Photocatalyst releasing hydrogen from water.

          Direct splitting of water using a particulate photocatalyst would be a good way to produce clean and recyclable hydrogen on a large scale, and in the past 30 years various photocatalysts have been found that function under visible light. Here we describe an advance in the catalysis of the overall splitting of water under visible light: the new catalyst is a solid solution of gallium and zinc nitrogen oxide, (Ga(1-x)Zn(x))(N(1-x)O(x)), modified with nanoparticles of a mixed oxide of rhodium and chromium. The mixture functions as a promising and efficient photocatalyst in promoting the evolution of hydrogen gas.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Advanced nanoarchitectures for solar photocatalytic applications.

                Bookmark

                Author and article information

                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2016
                2016
                : 45
                : 21
                : 5951-5984
                Article
                10.1039/C5CS00769K
                27704059
                1fa9708b-7fb0-455a-b43b-394f971fcaa8
                © 2016
                History

                Comments

                Comment on this article