16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determinants in the LIN-12/Notch Intracellular Domain That Govern Its Activity and Stability During Caenorhabditis elegans Vulval Development

      research-article
      * , * , , 1
      G3: Genes|Genomes|Genetics
      Genetics Society of America
      Notch, C. elegans

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upon ligand binding, the LIN-12/Notch intracellular domain is released from its transmembrane tether to function in a nuclear complex that activates transcription of target genes. During Caenorhabditis elegans vulval development, LIN-12/Notch is activated by ligand in two of six multipotential vulval precursor cells (VPCs), specifying the “secondary vulval fate” and descendants that contribute to the vulva. If LIN-12 is ectopically activated in other VPCs, they also adopt the secondary fate, dividing to produce extra vulval cells, resulting in a “Multivulva” phenotype. Here, we identify determinants in the LIN-12 intracellular domain [“LIN-12(intra)”] that govern its activity and stability during C. elegans vulval development; we assayed activity of mutant forms based on their ability to cause a Multivulva phenotype and stability using a GFP tag to visualize their accumulation. Our analysis has revealed that, while the ubiquitin ligase SEL-10/Fbw7 promotes LIN-12(intra) downregulation in VPCs, there is a distinct mechanism for downregulation of LIN-12(intra) in VPC descendants. Our analysis also revealed that LIN-12(intra) must be in the nuclear complex to be regulated appropriately in VPCs and their descendants, and that the structure or conformation of the carboxy-terminal region influences stability as well. Although activity and stability are generally well-correlated, exceptions where they are uncoupled suggest that there may be roles for the carboxy-terminal region and sel-10 that are independent of their roles in regulating LIN-12(intra) stability.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.

          FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCF(FBW7) degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors

            γ-secretase inhibitors (GSIs) can block NOTCH receptor signaling in vitro and therefore offer an attractive targeted therapy for tumors dependent on deregulated NOTCH activity. To clarify the basis for GSI resistance in T cell acute lymphoblastic leukemia (T-ALL), we studied T-ALL cell lines with constitutive expression of the NOTCH intracellular domain (NICD), but that lacked C-terminal truncating mutations in NOTCH1. Each of the seven cell lines examined and 7 of 81 (8.6%) primary T-ALL samples harbored either a mutation or homozygous deletion of the gene FBW7, a ubiquitin ligase implicated in NICD turnover. Indeed, we show that FBW7 mutants cannot bind to the NICD and define the phosphodegron region of the NICD required for FBW7 binding. Although the mutant forms of FBW7 were still able to bind to MYC, they do not target it for degradation, suggesting that stabilization of both NICD and its principle downstream target, MYC, may contribute to transformation in leukemias with FBW7 mutations. In addition, we show that all seven leukemic cell lines with FBW7 mutations were resistant to the MRK-003 GSI. Most of these resistant lines also failed to down-regulate the mRNA levels of the NOTCH targets MYC and DELTEX1 after treatment with MRK-003, implying that residual NOTCH signaling in T-ALLs with FBW7 mutations contributes to GSI resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover.

              Notch signaling releases the Notch receptor intracellular domain (ICD), which complexes with CBF1 and Mastermind (MAM) to activate responsive genes. We previously reported that MAM interacts with CBP/p300 and promotes hyperphosphorylation and degradation of the Notch ICD in vivo. Here we show that CycC:CDK8 and CycT1:CDK9/P-TEFb are recruited with Notch and associated coactivators (MAM, SKIP) to the HES1 promoter in signaling cells. MAM interacts directly with CDK8 and can cause it to localize to subnuclear foci. Purified recombinant CycC:CDK8 phosphorylates the Notch ICD within the TAD and PEST domains, and expression of CycC:CDK8 strongly enhances Notch ICD hyperphosphorylation and PEST-dependent degradation by the Fbw7/Sel10 ubiquitin ligase in vivo. Point mutations affecting conserved Ser residues within the ICD PEST motif prevent hyperphosphorylation by CycC:CDK8 and stabilize the ICD in vivo. These findings suggest a role for MAM and CycC:CDK8 in the turnover of the Notch enhancer complex at target genes.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                16 September 2016
                November 2016
                : 6
                : 11
                : 3663-3670
                Affiliations
                [* ]Department of Biological Sciences, Columbia University, New York 10027
                []Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10027
                Author notes
                [1 ]Corresponding author: Columbia University, 1212 Amsterdam Avenue, 804A Fairchild, Mailbox Code MC2421, New York, NY 10027. E-mail: isg4@ 123456columbia.edu
                Article
                GGG_034363
                10.1534/g3.116.034363
                5100865
                27646703
                1f8ad824-1ae3-4b97-aa1d-16fa8cfab1f8
                Copyright © 2016 Deng and Greenwald

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 August 2016
                : 13 September 2016
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 30, Pages: 8
                Categories
                Investigations

                Genetics
                notch,c. elegans
                Genetics
                notch, c. elegans

                Comments

                Comment on this article