8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.

          Increasing evidence indicates that metabolic disorders in offspring can result from the father's diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA-derived small RNAs (tsRNAs), mainly from 5' transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.

            Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNA(Asp-GTC), tRNA(Val-AAC) and tRNA(Gly-GCC) are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.

              Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                25 January 2019
                20 November 2018
                20 November 2018
                : 47
                : 2
                : 941-952
                Affiliations
                Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
                Author notes
                To whom correspondence should be addressed. Tel: +333 67 15 53 98; Email: laurence.drouard@ 123456ibmp-cnrs.unistra.fr

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

                Article
                gky1156
                10.1093/nar/gky1156
                6344867
                30462257
                1f88998d-e6b0-4625-b129-8a4d3ab51e29
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 29 October 2018
                : 04 June 2018
                Page count
                Pages: 12
                Funding
                Funded by: Centre National de la Recherche Scientifique
                Funded by: French National Research Agency 10.13039/501100001665
                Award ID: ANR-11-LABX-0057
                Categories
                RNA and RNA-protein complexes

                Genetics
                Genetics

                Comments

                Comment on this article