10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      2D MXenes for Fire Retardancy and Fire‐Warning Applications: Promises and Prospects

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Frequent fire disasters have caused massive impacts to the environment, human beings, and the economy. MXene has recently been intensively researched as potential flame retardants to provide passive fire protection for other materials via its physical barrier and catalyzing carbonization effects. In parallel, MXene has also demonstrated a great promise for creating early fire warning sensors, which is an emerging field that has the potential to provide active fire response through its thermoelectric effect. This makes it possible to integrate passive fire retardancy and active fire warning into one MXene‐based fire protection system on demand. However, fulfilling these promises needs more research. Herein, an overview of passive flame‐retardant materials and next‐generation smart fire warning materials/sensors based on MXene and its derivatives is provided. This study reviews their conceptual design, characterization, modification principles, performances, applications, and mechanisms. A discussion of the challenges that need to be solved for their future practical applications and opportunities is also presented.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

            Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The world of two-dimensional carbides and nitrides (MXenes)

              A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                February 2023
                December 16 2022
                February 2023
                : 33
                : 9
                Affiliations
                [1 ] College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266045 China
                [2 ] China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing 314001 China
                [3 ] Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Nanjing 210042 China
                [4 ] Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
                [5 ] College of Environment and Safety Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350116 China
                [6 ] Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
                [7 ] School of Agriculture and Environmental Science University of Southern Queensland Springfield Central Springfield 4300 Australia
                Article
                10.1002/adfm.202212124
                1f87bc53-3f5b-469f-9171-2d9723c10b52
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article