8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP + afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT + and TH + efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP + (scattered minority, ~7%) and VAChT + neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP + afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT + and TH + nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.

          NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The enteric nervous system and neurogastroenterology.

          Neurogastroenterology is defined as neurology of the gastrointestinal tract, liver, gallbladder and pancreas and encompasses control of digestion through the enteric nervous system (ENS), the central nervous system (CNS) and integrative centers in sympathetic ganglia. This Review provides a broad overview of the field of neurogastroenterology, with a focus on the roles of the ENS in the control of the musculature of the gastrointestinal tract and transmucosal fluid movement. Digestion is controlled through the integration of multiple signals from the ENS and CNS; neural signals also pass between distinct gut regions to coordinate digestive activity. Moreover, neural and endocrine control of digestion is closely coordinated. Interestingly, the extent to which the ENS or CNS controls digestion differs considerably along the digestive tract. The importance of the ENS is emphasized by the life-threatening effects of certain ENS neuropathies, including Hirschsprung disease and Chagas disease. Other ENS disorders, such as esophageal achalasia and gastroparesis, cause varying degrees of dysfunction. The neurons in enteric reflex pathways use a wide range of chemical messengers that signal through an even wider range of receptors. These receptors provide many actual and potential targets for modifying digestive function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of substance P in inflammatory disease.

            The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease. Copyright 2004 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autonomic regulation of islet hormone secretion--implications for health and disease.

              B. Ahrén (2000)
              The pancreatic islets are richly innervated by parasympathetic, sympathetic and sensory nerves. Several different neurotransmitters are stored within the terminals of these nerves, both the classical neurotransmitters, acetylcholine and noradrenaline, and several neuropeptides. The neuropeptides, vasoactive intestinal polypeptide, pituitary adenlyate cyclase activating polypeptide and gastrin releasing peptide are constituents of the parasympathetic nerves, whereas the neuropeptides galanin and neuropeptide Y are localised to sympathetic nerve terminals. Furthermore, the neuropeptide calcitonin gene-related peptide is localised to sensory nerves and cholecystokinin is also an islet neuropeptide, although the nature of the cholecystokinin nerves is not established. Stimulation of the autonomic nerves and treatment with neurotransmitters affect islet hormone secretion. Thus, insulin secretion is stimulated by parasympathetic nerves or their neurotransmitters and inhibited by sympathetic nerves or their neurotransmitters. The islet autonomic nerves seem to be of physiological importance in mediating the cephalic phase of insulin secretion, in synchronising the islets to function as a unit allowing oscillations of islet hormone secretion, and in optimising islet hormone secretion during metabolic stress, e.g. hypoglycaemia and neuroglycopenia. The autonomic nerves could also be involved in the islet adaptation to insulin resistance with possible implication for the development of glucose intolerance and Type II (non-insulin-dependent) diabetes mellitus. It is concluded that islet innervation, through the contribution of all branches of the autonomic nerves and several different neurotransmitters is of importance both for the physiology and pathophysiology of the islets.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Physiological Society
                0193-1857
                1522-1547
                November 01 2019
                November 01 2019
                : 317
                : 5
                : G694-G706
                Affiliations
                [1 ]Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
                [2 ]Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
                [3 ]Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
                [4 ]Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
                [5 ]Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
                Article
                10.1152/ajpgi.00116.2019
                31509431
                1f75c448-4198-4b34-aaf7-008f15bde504
                © 2019
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article