12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Stopover Duration and Low Body Condition of the Pied Flycatcher ( Ficedula hypoleuca) at an Autumn Stopover Site

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Many bird species that migrate long distances are in decline partly because of environmental changes, such as climate change or land-use changes. Although much is already known on the effects of environmental change on birds that are on their spring migration or on their breeding grounds, little is known with regard to possible negative effects on birds that are on their autumn migration and visiting so-called stopover sites on their way to their wintering grounds. These stopover sites are vital for birds to refuel, and a potential deteriorating quality of the stopover sites may lead to individuals dying during migration. We investigated the impacts of local environmental conditions on the migration strategy and body condition of the Pied Flycatcher at an autumn migration stopover site using long-term ringing data and local environmental conditions. We found that although birds arrived and departed the stopover site around the same time over the years, the body condition of the individuals caught decreased, and the length of their stay at the stopover site increased. This suggests that conditions at the stopover site during the autumn migration period have deteriorated over time which may lead to the death of more birds during autumn migration.

          Abstract

          Many long-distance migratory bird species are in decline, of which environmental changes, such as climate change and land-use changes, are thought to be important drivers. The effects of environmental change on the migration of these birds have often been studied during spring migration. Fewer studies have explored the impacts of environmental change on autumn migration, especially at stopover sites. However, stopover sites are important, as the quality of these sites is expected to change over time. We investigated impacts of local environmental conditions on the migration strategy and body condition of the Pied Flycatcher ( Ficedula hypoleuca) at an autumn migration stopover site using long-term ringing data (1996–2018) and local environmental conditions. We found that although the arrival and departure dates of birds at the stopover site remained unchanged, the body condition (fat score) of the individuals caught decreased, and the stopover duration increased. This suggests that conditions at the stopover site during the autumn migration period have deteriorated over time. This study emphasizes the importance of suitable stopover sites for migratory birds and stresses that changes in environmental conditions during the autumn migration period may be contributing to the current decline in long-distance migratory passerines.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Fitting Linear Mixed-Effects Models Usinglme4

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PLS-SEM: Indeed a Silver Bullet

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              More than 75 percent decline over 27 years in total flying insect biomass in protected areas

              Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                25 November 2020
                December 2020
                : 10
                : 12
                : 2208
                Affiliations
                [1 ]Wildlife Ecology and Conservation Group, Wageningen University, 6708 PB Wageningen, The Netherlands; Anouschka.Hof@ 123456wur.nl
                [2 ]A Rocha, Apartado 41, 8501-903 Mexilhoeira Grande, Portugal; Marcial.Felgueiras@ 123456arocha.org
                [3 ]Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
                Author notes
                Author information
                https://orcid.org/0000-0002-9592-1608
                https://orcid.org/0000-0001-6743-0089
                Article
                animals-10-02208
                10.3390/ani10122208
                7760531
                33255706
                1f699595-07a8-4bc1-b0f0-b1a7ac0a998b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 October 2020
                : 20 November 2020
                Categories
                Article

                climate change,migration strategy,movement ecology,passerines

                Comments

                Comment on this article