Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway

      , , , , , , ,
      Biomedicine & Pharmacotherapy
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.

          Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melatonin: a well-documented antioxidant with conditional pro-oxidant actions.

            Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine produced in many organs including the pineal gland, was initially characterized as a hormone primarily involved in circadian regulation of physiological and neuroendocrine function. Subsequent studies found that melatonin and its metabolic derivatives possess strong free radical scavenging properties. These metabolites are potent antioxidants against both ROS (reactive oxygen species) and RNS (reactive nitrogen species). The mechanisms by which melatonin and its metabolites protect against free radicals and oxidative stress include direct scavenging of radicals and radical products, induction of the expression of antioxidant enzymes, reduction of the activation of pro-oxidant enzymes, and maintenance of mitochondrial homeostasis. In both in vitro and in vivo studies, melatonin has been shown to reduce oxidative damage to lipids, proteins and DNA under a very wide set of conditions where toxic derivatives of oxygen are known to be produced. Although the vast majority of studies proved the antioxidant capacity of melatonin and its derivatives, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations (μm to mm range) in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro-oxidant. Mechanistically, melatonin may stimulate ROS production through its interaction with calmodulin. Also, melatonin may interact with mitochondrial complex III or mitochondrial transition pore to promote ROS production. Whether melatonin functions as a pro-oxidant under in vivo conditions is not well documented; thus, whether the reported in vitro pro-oxidant actions come into play in live organisms remains to be established. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin: an ancient molecule that makes oxygen metabolically tolerable.

              Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
                Bookmark

                Author and article information

                Journal
                Biomedicine & Pharmacotherapy
                Biomedicine & Pharmacotherapy
                Elsevier BV
                07533322
                December 2020
                December 2020
                : 132
                : 110827
                Article
                10.1016/j.biopha.2020.110827
                33065391
                1f3b857b-f7d0-4565-8ad5-060cef829ace
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article