2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitigating undercooling and overheating risk in existing desert schools under current and future climate using validated building simulation model

      , , , ,
      Building and Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

          By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature.

              To assess whether school environments can adversely affect academic performance, we review scientific evidence relating indoor pollutants and thermal conditions, in schools or other indoor environments, to human performance or attendance. We critically review evidence for direct associations between these aspects of indoor environmental quality (IEQ) and performance or attendance. Secondarily, we summarize, without critique, evidence on indirect connections potentially linking IEQ to performance or attendance. Regarding direct associations, little strongly designed research was available. Persuasive evidence links higher indoor concentrations of NO(2) to reduced school attendance, and suggestive evidence links low ventilation rates to reduced performance. Regarding indirect associations, many studies link indoor dampness and microbiologic pollutants (primarily in homes) to asthma exacerbations and respiratory infections, which in turn have been related to reduced performance and attendance. Also, much evidence links poor IEQ (e.g. low ventilation rate, excess moisture, or formaldehyde) with adverse health effects in children and adults and documents dampness problems and inadequate ventilation as common in schools. Overall, evidence suggests that poor IEQ in schools is common and adversely influences the performance and attendance of students, primarily through health effects from indoor pollutants. Evidence is available to justify (i) immediate actions to assess and improve IEQ in schools and (ii) focused research to guide IEQ improvements in schools. There is more justification now for improving IEQ in schools to reduce health risks to students than to reduce performance or attendance risks. However, as IEQ-performance links are likely to operate largely through effects of IEQ on health, IEQ improvements that benefit the health of students are likely to have performance and attendance benefits as well. Immediate actions are warranted in schools to prevent dampness problems, inadequate ventilation, and excess indoor exposures to substances such as NO(2) and formaldehyde. Also, siting of new schools in areas with lower outdoor pollutant levels is preferable.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Building and Environment
                Building and Environment
                Elsevier BV
                03601323
                November 2023
                November 2023
                : 245
                : 110871
                Article
                10.1016/j.buildenv.2023.110871
                1f3b04c1-1db1-4330-8bc8-97ef120350c0
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,293

                Cited by1

                Most referenced authors369