3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The southern house mosquito Culex quinquefasciatus in Abu Dhabi, UAE, is developing resistance to deltamethrin insecticide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Culex quinquefasciatus is a widely spread mosquito species that poses a significant public health threat in many countries. This insect vector is present in the United Arab Emirates (UAE), yet no studies have been conducted on its resistance to any insecticide group. Research shows that controlling mosquitoes is crucial to eliminating mosquito-borne diseases, but when these vectors develop insecticide resistance, the situation can escalate dangerously out of control. This study aimed to identify a knockdown resistance ( kdr) mutation L1014F using molecular tools. Additionally, it aimed to assess deltamethrin resistance using the Centers for Disease Control and Prevention (CDC) bottle bioassay. We screened Cx. quinquefasciatus adults ( N = 174) for the presence of the mutation using allele-specific PCR (AS-PCR) and DNA sequencing. We detected the mutation and found the kdr allele in all the sampled locations. Furthermore, the CDC bottle bioassay revealed deltamethrin resistance from only one sampling location. To our knowledge, this is the first report of insecticide resistance in Cx. quinquefasciatus in the UAE. Our findings show the need for continued insecticide resistance monitoring for effective mosquito control in the UAE.

          Supplementary Information

          The online version contains supplementary material available at 10.1038/s41598-025-87843-6.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MEGA11: Molecular Evolutionary Genetics Analysis Version 11

          The Molecular Evolutionary Genetics Analysis (MEGA) software has matured to contain a large collection of methods and tools of computational molecular evolution. Here, we describe new additions that make MEGA a more comprehensive tool for building timetrees of species, pathogens, and gene families using rapid relaxed-clock methods. Methods for estimating divergence times and confidence intervals are implemented to use probability densities for calibration constraints for node-dating and sequence sampling dates for tip-dating analyses. They are supported by new options for tagging sequences with spatiotemporal sampling information, an expanded interactive Node Calibrations Editor , and an extended Tree Explorer to display timetrees. Also added is a Bayesian method for estimating neutral evolutionary probabilities of alleles in a species using multispecies sequence alignments and a machine learning method to test for the autocorrelation of evolutionary rates in phylogenies. The computer memory requirements for the maximum likelihood analysis are reduced significantly through reprogramming, and the graphical user interface has been made more responsive and interactive for very big data sets. These enhancements will improve the user experience, quality of results, and the pace of biological discovery. Natively compiled graphical user interface and command-line versions of MEGA11 are available for Microsoft Windows, Linux, and macOS from www.megasoftware.net .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unipro UGENE: a unified bioinformatics toolkit.

            Unipro UGENE is a multiplatform open-source software with the main goal of assisting molecular biologists without much expertise in bioinformatics to manage, analyze and visualize their data. UGENE integrates widely used bioinformatics tools within a common user interface. The toolkit supports multiple biological data formats and allows the retrieval of data from remote data sources. It provides visualization modules for biological objects such as annotated genome sequences, Next Generation Sequencing (NGS) assembly data, multiple sequence alignments, phylogenetic trees and 3D structures. Most of the integrated algorithms are tuned for maximum performance by the usage of multithreading and special processor instructions. UGENE includes a visual environment for creating reusable workflows that can be launched on local resources or in a High Performance Computing (HPC) environment. UGENE is written in C++ using the Qt framework. The built-in plugin system and structured UGENE API make it possible to extend the toolkit with new functionality. UGENE binaries are freely available for MS Windows, Linux and Mac OS X at http://ugene.unipro.ru/download.html. UGENE code is licensed under the GPLv2; the information about the code licensing and copyright of integrated tools can be found in the LICENSE.3rd_party file provided with the source bundle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies

              Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the “missingness” of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. In this paper, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. The authors also present a Web program (http://www.oege.org/software/hwe-mr-calc.shtml) for estimating possible missingness and an approach to evaluating missingness under different genetic models.
                Bookmark

                Author and article information

                Contributors
                m_aldeeb@uaeu.ac.ae
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 January 2025
                27 January 2025
                2025
                : 15
                : 3411
                Affiliations
                [1 ]Biology Department, UAE University, ( https://ror.org/01km6p862) P.O. Box 15551, Al Ain, UAE
                [2 ]GRID grid.513622.1, Pest Control Department, , Abu Dhabi Public Health Center (ADPHC), ; P.O. Box 5674, Abu Dhabi, UAE
                Article
                87843
                10.1038/s41598-025-87843-6
                11772883
                39870794
                1f388a0d-3a8e-483f-ac19-471d1eeab27f
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 6 August 2024
                : 22 January 2025
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100006013, United Arab Emirates University;
                Award ID: G00003719
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2025

                Uncategorized
                culex quinquefasciatus,pyrethroid,deltamethrin,kdr,resistance,as-pcr,cdc bottle bioassay,entomology,public health,parasitology

                Comments

                Comment on this article