2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Palmitoylation acts as a checkpoint for MAVS aggregation to promote antiviral innate immune responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upon RNA virus infection, the signaling adaptor MAVS forms functional prion-like aggregates on the mitochondrial outer membrane, which serve as a central hub that links virus recognition to downstream antiviral innate immune responses. Multiple mechanisms regulating MAVS activation have been revealed; however, the checkpoint governing MAVS aggregation remains elusive. Here, we demonstrated that the palmitoylation of MAVS at cysteine 79 (C79), which is catalyzed mainly by the palmitoyl S-acyltransferase ZDHHC12, was essential for MAVS aggregation and antiviral innate immunity upon viral infection in macrophages. Notably, the systemic lupus erythematosus–associated mutation MAVS C79F was associated with defective palmitoylation, resulting in low type I interferon (IFN) production. Accordingly, Zdhhc12 deficiency apparently impaired RNA virus–induced type I IFN responses, and Zdhhc12-deficient mice were highly susceptible to lethal viral infection. These findings reveal a previously unknown mechanism by which the palmitoylation of MAVS is a checkpoint for its aggregation during viral infection to ensure timely activation of antiviral defense.

          Abstract

          Palmitoylation of MAVS is a checkpoint for its aggregation during viral infection to ensure timely activation of antiviral defense

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

          High-throughput sequencing of messenger RNA (RNA-seq) has become the standard method for measuring and comparing the levels of gene expression in a wide variety of species and conditions. RNA-seq experiments generate very large, complex data sets that demand fast, accurate, and flexible software to reduce the raw read data to comprehensible results. HISAT, StringTie, and Ballgown are free, open-source software tools for comprehensive analysis of RNA-seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts including novel splice variants, compute the abundance of these transcripts in each sample, and compare experiments to identify differentially expressed genes and transcripts. This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts. The protocol’s execution time depends on the computing resources, but typically takes under 45 minutes of computer time. Pertea et al. describe a protocol to analyze RNA-seq data using HISAT, StringTie, and Ballgown (the “new Tuxedo” package). The protocol can be used for assembly of transcripts, quantification of gene expression levels and differential expression analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pattern recognition receptors and inflammation.

            Infection of cells by microorganisms activates the inflammatory response. The initial sensing of infection is mediated by innate pattern recognition receptors (PRRs), which include Toll-like receptors, RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors. The intracellular signaling cascades triggered by these PRRs lead to transcriptional expression of inflammatory mediators that coordinate the elimination of pathogens and infected cells. However, aberrant activation of this system leads to immunodeficiency, septic shock, or induction of autoimmunity. In this Review, we discuss the role of PRRs, their signaling pathways, and how they control inflammatory responses. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling

              We report here the identification, following expression cloning, of a molecule, STING (STimulator of INterferon Genes) that regulates innate immune signaling processes. STING, comprising 5 putative transmembrane (TM) regions, predominantly resides in the endoplasmic reticulum (ER) and is able to activate both NF-κB and IRF3 transcription pathways to induce type I IFN and exert a potent anti-viral state following expression. In contrast, loss of STING rendered murine embryonic fibroblasts (STING −/−MEFs) extremely susceptible to negative-stranded virus infection, including vesicular stomatitis virus, VSV. Further, STING ablation abrogated the ability of intracellular B-form DNA, as well as members of the herpes virus family, to induce IFNβ, but did not significantly affect the Toll-like receptor (TLR pathway). Yeast-two hybrid and co-immunprecipitation studies indicated that STING interacts with RIG-I and with Ssr2/TRAPβ, a member of the translocon-associated protein (TRAP) complex required for protein translocation across the ER membrane following translation[1, 2]. RNAi ablation of TRAPβ and translocon adaptor Sec61β was subsequently found to inhibit STING’s ability to stimulate IFNβ. Thus, aside from identifying a novel regulator of innate immune signaling, this data implicates for the first time a potential role for the translocon in innate signaling pathways activated by select viruses as well as intracellular DNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Clin Invest
                J Clin Invest
                J Clin Invest
                The Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                2 December 2024
                2 December 2024
                2 December 2024
                : 134
                : 23
                : e177924
                Affiliations
                [1 ]MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China.
                [2 ]Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China.
                [3 ]Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
                Author notes
                Address correspondence to: Jun Cui, School of Life Sciences of Sun Yat-sen University, No. 135, West Xingang Road, Guangzhou 510275, China. Phone: 086.020.84111316; Email: cuij5@ 123456mail.sysu.edu.cn .
                Article
                177924
                10.1172/JCI177924
                11601910
                39621307
                1f23f8ba-83f7-45b0-af9c-9ae9c09986e8
                © 2024 Wang et al.

                This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 November 2023
                : 11 October 2024
                Funding
                Funded by: National Natural Science Foundation of China, https://doi.org/10.13039/501100001809;
                Award ID: 82341047
                Funded by: National Natural Science Foundation of China, https://doi.org/10.13039/501100001809;
                Award ID: 82341047
                Categories
                Research Article

                cell biology,immunology,innate immunity,molecular biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content554

                Most referenced authors1,232