2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model

      , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smoke plumes are the first things seen from space when wildfires occur. Thus, fire smoke detection is important for early fire detection. Deep Learning (DL) models have been used to detect fire smoke in satellite imagery for fire detection. However, previous DL-based research only considered lower spatial resolution sensors (e.g., Moderate-Resolution Imaging Spectroradiometer (MODIS)) and only used the visible (i.e., red, green, blue (RGB)) bands. To contribute towards solutions for early fire smoke detection, we constructed a six-band imagery dataset from Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) with a 30-metre spatial resolution. The dataset consists of 1836 images in three classes, namely “Smoke”, “Clear”, and “Other_aerosol”. To prepare for potential on-board-of-small-satellite detection, we designed a lightweight Convolutional Neural Network (CNN) model named “Variant Input Bands for Smoke Detection (VIB_SD)”, which achieved competitive accuracy with the state-of-the-art model SAFA, with less than 2% of its number of parameters. We further investigated the impact of using additional Infra-Red (IR) bands on the accuracy of fire smoke detection with VIB_SD by training it with five different band combinations. The results demonstrated that adding the Near-Infra-Red (NIR) band improved prediction accuracy compared with only using the visible bands. Adding both Short-Wave Infra-Red (SWIR) bands can further improve the model performance compared with adding only one SWIR band. The case study showed that the model trained with multispectral bands could effectively detect fire smoke mixed with cloud over small geographic extents.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Squeeze-and-Excitation Networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

            Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Residual Attention Network for Image Classification

                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                July 2022
                June 25 2022
                : 14
                : 13
                : 3047
                Article
                10.3390/rs14133047
                1f1bc7d0-9162-42e2-900c-b995820bf97e
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article