4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Binding of Curcumin to Senile Plaques and Cerebral Amyloid Angiopathy in the Aged Brain of Various Animals and to Neurofibrillary Tangles in Alzheimer's Brain

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model.

          Alzheimer's disease (AD) is characterized by senile plaques and neurodegeneration although the neurotoxic mechanisms have not been completely elucidated. It is clear that both oxidative stress and inflammation play an important role in the illness. The compound curcumin, with a broad spectrum of anti-oxidant, anti-inflammatory, and anti-fibrilogenic activities may represent a promising approach for preventing or treating AD. Curcumin is a small fluorescent compound that binds to amyloid deposits. In the present work we used in vivo multiphoton microscopy (MPM) to demonstrate that curcumin crosses the blood-brain barrier and labels senile plaques and cerebrovascular amyloid angiopathy (CAA) in APPswe/PS1dE9 mice. Moreover, systemic treatment of mice with curcumin for 7 days clears and reduces existing plaques, as monitored with longitudinal imaging, suggesting a potent disaggregation effect. Curcumin also led to a limited, but significant reversal of structural changes in dystrophic dendrites, including abnormal curvature and dystrophy size. Together, these data suggest that curcumin reverses existing amyloid pathology and associated neurotoxicity in a mouse model of AD. This approach could lead to more effective clinical therapies for the prevention of oxidative stress, inflammation and neurotoxicity associated with AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease.

            Curcumin can reduce inflammation and neurodegeneration, but its chemical instability and metabolism raise concerns, including whether the more stable metabolite tetrahydrocurcumin (TC) may mediate efficacy. We examined the antioxidant, anti-inflammatory, or anti-amyloidogenic effects of dietary curcumin and TC, either administered chronically to aged Tg2576 APPsw mice or acutely to lipopolysaccharide (LPS)-injected wild-type mice. Despite dramatically higher drug plasma levels after TC compared with curcumin gavage, resulting brain levels of parent compounds were similar, correlating with reduction in LPS-stimulated inducible nitric-oxide synthase, nitrotyrosine, F2 isoprostanes, and carbonyls. In both the acute (LPS) and chronic inflammation (Tg2576), TC and curcumin similarly reduced interleukin-1beta. Despite these similarities, only curcumin was effective in reducing amyloid plaque burden, insoluble beta-amyloid peptide (Abeta), and carbonyls. TC had no impact on plaques or insoluble Abeta, but both reduced Tris-buffered saline-soluble Abeta and phospho-c-Jun NH(2)-terminal kinase (JNK). Curcumin but not TC prevented Abeta aggregation. The TC metabolite was detected in brain and plasma from mice chronically fed the parent compound. These data indicate that the dienone bridge present in curcumin, but not in TC, is necessary to reduce plaque deposition and protein oxidation in an Alzheimer's model. Nevertheless, TC did reduce neuroinflammation and soluble Abeta, effects that may be attributable to limiting JNK-mediated transcription. Because of its favorable safety profile and the involvement of misfolded proteins, oxidative damage, and inflammation in multiple chronic degenerative diseases, these data relating curcumin dosing to the blood and tissue levels required for efficacy should help translation efforts from multiple successful preclinical models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-beta aggregation pathway.

              Inhibition of amyloid-beta (Abeta) aggregation is an attractive therapeutic strategy for Alzheimer's disease (AD). Certain phenolic compounds have been reported to have anti-Abeta aggregation effects in vitro. This study systematically investigated the effects of phenolic compounds on AD model transgenic mice (Tg2576). Mice were fed five phenolic compounds (curcumin, ferulic acid, myricetin, nordihydroguaiaretic acid (NDGA), and rosmarinic acid (RA)) for 10 months from the age of 5 months. Immunohistochemically, in both the NDGA- and RA-treated groups, Abeta deposition was significantly decreased in the brain (P < 0.05). In the RA-treated group, the level of Tris-buffered saline (TBS)-soluble Abeta monomers was increased (P < 0.01), whereas that of oligomers, as probed with the A11 antibody (A11-positive oligomers), was decreased (P < 0.001). However, in the NDGA-treated group, the abundance of A11-positive oligomers was increased (P < 0.05) without any change in the levels of TBS-soluble or TBS-insoluble Abeta. In the curcumin- and myricetin-treated groups, changes in the Abeta profile were similar to those in the RA-treated group, but Abeta plaque deposition was not significantly decreased. In the ferulic acid-treated group, there was no significant difference in the Abeta profile. These results showed that oral administration of phenolic compounds prevented the development of AD pathology by affecting different Abeta aggregation pathways in vivo. Clinical trials with these compounds are necessary to confirm the anti-AD effects and safety in humans.
                Bookmark

                Author and article information

                Journal
                Journal of Veterinary Medical Science
                J. Vet. Med. Sci.
                Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                2012
                2012
                : 74
                : 1
                : 51-57
                Article
                10.1292/jvms.11-0307
                21891973
                1f189924-636d-40a7-94ae-da6a92a75f1e
                © 2012
                History

                Comments

                Comment on this article