17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A putative amino acid transporter determines sensitivity to the two‐peptide bacteriocin plantaricin JK

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane protein receptor of the two‐peptide bacteriocin plantaricin JK was identified by comparing Illumina sequence reads from plantaricin JK‐resistant mutants to a crude assembly of the sensitive wild‐type Weissella viridescens genome using the polymorphism discovery tool VAAL. Ten resistant mutants harbored altogether seven independent mutations in a gene encoding an APC superfamily protein with 12 transmembrane helices. The APC superfamily transporter thus is likely to serve as a target for plantaricin JK on sensitive cells.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocins: evolution, ecology, and application.

            Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common mechanisms of target cell recognition and immunity for class II bacteriocins.

              The mechanisms of target cell recognition and producer cell self-protection (immunity) are both important yet poorly understood issues in the biology of peptide bacteriocins. In this report, we provide genetic and biochemical evidence that lactococcin A, a permeabilizing peptide-bacteriocin from Lactococcus lactis, uses components of the mannose phosphotransferase system (man-PTS) of susceptible cells as target/receptor. We present experimental evidence that the immunity protein LciA forms a strong complex with the receptor proteins and the bacteriocin, thereby preventing cells from being killed. Importantly, the complex between LciA and the man-PTS components (IIAB, IIC, and IID) appears to involve an on-off type mechanism that allows complex formation only in the presence of bacteriocin; otherwise no complexes were observed between LciA and the receptor proteins. Deletion of the man-PTS operon combined with biochemical studies revealed that the presence of the membrane-located components IIC and IID was sufficient for sensitivity to lactococcin A as well as complex formation with LciA. The cytoplasmic component of the man-PTS, IIAB, was not required for the biological sensitivity or for complex formation. Furthermore, heterologous expression of the lactococcal man-PTS operon rendered the insensitive Lactobacillus sakei susceptible to lactococcin A. We also provide evidence that, not only lactococcin A, but other class II peptide-bacteriocins including lactococcin B and some Listeria-active pediocin-like bacteriocins also target the man-PTS components IIC and IID on susceptible cells and that their immunity proteins involve a mechanism in producer cell self-protection similar to that observed for LciA.
                Bookmark

                Author and article information

                Journal
                Microbiologyopen
                Microbiologyopen
                10.1002/(ISSN)2045-8827
                MBO3
                MicrobiologyOpen
                John Wiley and Sons Inc. (Hoboken )
                2045-8827
                05 May 2016
                August 2016
                : 5
                : 4 ( doiID: 10.1002/mbo3.2016.5.issue-4 )
                : 700-708
                Affiliations
                [ 1 ] Biochemistry and Molecular Biology Section Department of BiosciencesUniversity of Oslo P.O. Box 1066 Blindern Oslo 0316Norway
                [ 2 ] Molecular Genetics Group Groningen Biomolecular Sciences and Biotechnology InstituteCentre for Synthetic Biology University of Groningen Nijenborgh 7 9747 AG GroningenThe Netherlands
                Author notes
                [*] [* ] Correspondence

                Tom Kristensen, Biochemistry and Molecular Biology Section, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo 0316, Norway. Tel: +47 2285 6629; Fax: +47 2285 4443; E‐mail: tom.kristensen@ 123456ibv.uio.no

                Author information
                http://orcid.org/0000-0002-2131-4469
                Article
                MBO3363
                10.1002/mbo3.363
                4985602
                27150273
                1eeddad2-e354-4bab-ac83-59600d70328a
                © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 November 2015
                : 15 March 2016
                : 23 March 2016
                Page count
                Pages: 9
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                mbo3363
                August 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:16.08.2016

                Microbiology & Virology
                antibacterial activity,bacteriocins,membrane proteins,mode of action
                Microbiology & Virology
                antibacterial activity, bacteriocins, membrane proteins, mode of action

                Comments

                Comment on this article