35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Peripheral vascular disease of the lower extremities comprises a clinical spectrum that extends from no symptoms to presentation with critical limb ischemia (CLI). Bone marrow derived Mesenchymal Stem Cells (BM- MSCs) may ameliorate the consequences of CLI due to their combinatorial potential for inducing angiogenesis and immunomodulatory environment in situ. The primary objective was to determine the safety of BM- MSCs in patients with CLI.

          Methods

          Prospective, double blind randomized placebo controlled multi-center study was conducted in patients with established CLI as per Rutherford classification in category II-4, III-5, or III-6 with infra-inguinal arterial occlusive disease and were not suitable for or had failed revascularization treatment. The primary end point was incidence of treatment – related adverse events (AE). Exploratory efficacy end points were improvement in rest pain, increase in Ankle Brachial Pressure Index (ABPI), ankle pressure, healing of ulcers, and amputation rates. Twenty patients (BM-MSC: Placebo = 1:1) were administered with allogeneic BM-MSCs at a dose of 2 million cells/kg or placebo (PlasmaLyte A) at the gastrocnemius muscle of the ischemic limb.

          Results

          Improvement was observed in the rest pain scores in both the arms. Significant increase in ABPI and ankle pressure was seen in BM-MSC arm compared to the placebo group. Incidence of AEs in the BM-MSC arm was 13 vs. 45 in the placebo arm where as serious adverse events (SAE) were similar in both the arms (5 in BM-MSC and 4 in the placebo group). SAEs resulted in death, infected gangrene, amputations in these patients. It was observed that the SAEs were related to disease progression and not related to stem cells.

          Conclusion

          BM-MSCs are safe when injected IM at a dose of 2 million cells/kg body weight. Few efficacy parameters such as ABPI and ankle pressure showed positive trend warranting further studies.

          Trial registration

          NIH website ( http://www.clinicaltrials.gov/ct2/show/NCT00883870)

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.

          Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.

            Marrow stromal cells (MSC) can differentiate into multiple mesenchymal tissues. To assess the feasibility of human MSC transplantation, we evaluated the in vitro immunogenicity of MSC and their ability to function as alloantigen presenting cells (APC). Human MSC were derived and used in mixed cell cultures with allogeneic peripheral blood mononuclear cells (PBMC). Expression of immunoregulatory molecules on MSC was analyzed by flow cytometry. An MSC-associated suppressive activity was analyzed using cell-proliferation assays and enzyme-linked immunoassays. MSC failed to elicit a proliferative response when cocultured with allogeneic PBMC, despite provision of a costimulatory signal delivered by an anti-CD28 antibody and pretreatment of MSC with gamma-interferon. MSC express major histocompatibility complex (MHC) class I and lymphocyte function-associated antigen (LFA)-3 antigens constitutively and MHC class II and intercellular adhesion molecule (ICAM)-1 antigens upon gamma-interferon treatment but do not express CD80, CD86, or CD40 costimulatory molecules. MSC actively suppressed proliferation of responder PBMC stimulated by third-party allogeneic PBMC as well as T cells stimulated by anti-CD3 and anti-CD28 antibodies. Separation of MSC and PBMC by a semipermeable membrane did not abrogate the suppression. The suppressive activity could not be accounted for by MSC production of interleukin-10, transforming growth factor-beta1, or prostaglandin E2, nor by tryptophan depletion of the culture medium. Human MSC fail to stimulate allogeneic PBMC or T-cell proliferation in mixed cell cultures. Unlike other nonprofessional APC, this failure of function is not reversed by provision of CD28-mediated costimulation nor gamma-interferon pretreatment. Rather, MSC actively inhibit T-cell proliferation, suggesting that allogeneic MSC transplantation might be accomplished without the need for significant host immunosuppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.

              Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various components of the marrow microenvironment, such as bone, adipose, and stromal tissues. The bone marrow microenvironment is vital to the development, differentiation, and regulation of the lymphohematopoietic system. We hypothesized that the activities of MSCs in the bone marrow microenvironment might also include immunomodulatory effects on lymphocytes. Baboon MSCs were tested in vitro for their ability to elicit a proliferative response from allogeneic lymphocytes, to inhibit an ongoing allogeneic response, and to inhibit a proliferative response to potent T-cell mitogens. In vivo effects were tested by intravenous administration of donor MSCs to MHC-mismatched recipient baboons prior to placement of autologous, donor, and third-party skin grafts. MSCs failed to elicit a proliferative response from allogeneic lymphocytes. MSCs added into a mixed lymphocyte reaction, either on day 0 or on day 3, or to mitogen-stimulated lymphocytes, led to a greater than 50% reduction in proliferative activity. This effect could be maximized by escalating the dose of MSCs and could be reduced with the addition of exogenous IL-2. In vivo administration of MSCs led to prolonged skin graft survival when compared to control animals: 11.3 +/- 0.3 vs 7 +/- 0. Baboon MSCs have been observed to alter lymphocyte reactivity to allogeneic target cells and tissues. These immunoregulatory features may prove useful in future applications of tissue regeneration and stem cell engineering.
                Bookmark

                Author and article information

                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central
                1479-5876
                2013
                10 June 2013
                : 11
                : 143
                Affiliations
                [1 ]Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
                [2 ]Department of Vascular Surgery, Medanta - The Medicity, Sector – 38, Gurgaon, Haryana, 122 001, India
                [3 ]Department of Vascular and Endovascular Surgery, MS Ramaiah Memorial Hospital, MSR Nagar, MSRIT Post, Bangalore, 560054, India
                [4 ]Consultant Vascular Surgeon, University Hospital of North Staffordshire, Newcastle-under-Lyme, Stoke-on-Trent, United Kingdom, Newcastle, ST5 0QP, UK
                Article
                1479-5876-11-143
                10.1186/1479-5876-11-143
                3688296
                23758736
                1ed92db1-44f9-4780-910c-7166f2f45082
                Copyright ©2013 Gupta et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 January 2013
                : 27 May 2013
                Categories
                Research

                Medicine
                cli,mesenchymal stem cells,abpi,bone marrow,allogeneic
                Medicine
                cli, mesenchymal stem cells, abpi, bone marrow, allogeneic

                Comments

                Comment on this article