24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered visual cortical processing in a mouse model of MECP2 duplication syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As an epigenetic modulator of gene expression, Methyl-CpG binding protein 2 (MeCP2) is essential for normal neurological function. Dysfunction of MeCP2 is associated with a variety of neurological disorders. MECP2 gene duplication in human causes neuropsychiatric symptoms such as mental retardation and autism. MeCP2 overexpression in mice results in neurobehavioural disorders, dendritic abnormalities, and synaptic defects. However, how gain of MeCP2 function influences cortical processing of sensory information remains unclear. In this study, we examined visual processing in a mouse model of MECP2 duplication syndrome (MECP2 Tg1 mouse) at 8 and 14 weeks, which were before and after the onset of behavioural symptoms, respectively. In vivo extracellular recordings from primary visual cortex (V1) showed that neurons in Tg1 mice at both adult ages preferred higher spatial frequencies (SFs) than those in wild-type (WT) littermate controls, and the semi-saturation contrasts of neurons were lower in Tg1 mice at 8 weeks but not at 14 weeks. Behavioural experiments showed that the performance for visual detection at high SFs and low contrasts was higher in MECP2 Tg1 mice. Thus, MeCP2 gain-of-function in mice leads to higher visual acuity and contrast sensitivity, both at the levels of cortical response and behavioural performance.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly selective receptive fields in mouse visual cortex.

            Genetic methods available in mice are likely to be powerful tools in dissecting cortical circuits. However, the visual cortex, in which sensory coding has been most thoroughly studied in other species, has essentially been neglected in mice perhaps because of their poor spatial acuity and the lack of columnar organization such as orientation maps. We have now applied quantitative methods to characterize visual receptive fields in mouse primary visual cortex V1 by making extracellular recordings with silicon electrode arrays in anesthetized mice. We used current source density analysis to determine laminar location and spike waveforms to discriminate putative excitatory and inhibitory units. We find that, although the spatial scale of mouse receptive fields is up to one or two orders of magnitude larger, neurons show selectivity for stimulus parameters such as orientation and spatial frequency that is near to that found in other species. Furthermore, typical response properties such as linear versus nonlinear spatial summation (i.e., simple and complex cells) and contrast-invariant tuning are also present in mouse V1 and correlate with laminar position and cell type. Interestingly, we find that putative inhibitory neurons generally have less selective, and nonlinear, responses. This quantitative description of receptive field properties should facilitate the use of mouse visual cortex as a system to address longstanding questions of visual neuroscience and cortical processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The story of Rett syndrome: from clinic to neurobiology.

              The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2), a transcriptional repressor involved in chromatin remodeling and the modulation of RNA splicing. MECP2 aberrations result in a constellation of neuropsychiatric abnormalities, whereby both loss of function and gain in MECP2 dosage lead to similar neurological phenotypes. Recent studies demonstrate disease reversibility in RTT mouse models, suggesting that the neurological defects in MECP2 disorders are not permanent. To investigate the potential for restoring neuronal function in RTT patients, it is essential to identify MeCP2 targets or modifiers of the phenotype that can be therapeutically modulated. Moreover, deciphering the molecular underpinnings of RTT is likely to contribute to the understanding of the pathogenesis of a broader class of neuropsychiatric disorders.
                Bookmark

                Author and article information

                Contributors
                haishanyao@ion.ac.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 July 2017
                25 July 2017
                2017
                : 7
                : 6468
                Affiliations
                [1 ]ISNI 0000 0004 0467 2285, GRID grid.419092.7, , Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ; Shanghai, 200031 China
                [2 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, , University of Chinese Academy of Sciences, ; Shanghai, 200031 China
                Author information
                http://orcid.org/0000-0003-4286-3288
                Article
                6916
                10.1038/s41598-017-06916-3
                5526895
                28743991
                1ecfce13-2a6f-4f1f-879a-2368999fadba
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 September 2016
                : 21 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article