1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel penalized inverse‐variance weighted estimator for Mendelian randomization with applications to COVID‐19 outcomes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mendelian randomization utilizes genetic variants as instrumental variables (IVs) to estimate the causal effect of an exposure variable on an outcome of interest even in the presence of unmeasured confounders. However, the popular inverse‐variance weighted (IVW) estimator could be biased in the presence of weak IVs, a common challenge in MR studies. In this article, we develop a novel penalized inverse‐variance weighted (pIVW) estimator, which adjusts the original IVW estimator to account for the weak IV issue by using a penalization approach to prevent the denominator of the pIVW estimator from being close to zero. Moreover, we adjust the variance estimation of the pIVW estimator to account for the presence of balanced horizontal pleiotropy. We show that the recently proposed debiased IVW (dIVW) estimator is a special case of our proposed pIVW estimator. We further prove that the pIVW estimator has smaller bias and variance than the dIVW estimator under some regularity conditions. We also conduct extensive simulation studies to demonstrate the performance of the proposed pIVW estimator. Furthermore, we apply the pIVW estimator to estimate the causal effects of five obesity‐related exposures on three coronavirus disease 2019 (COVID‐19) outcomes. Notably, we find that hypertensive disease is associated with an increased risk of hospitalized COVID‐19; and peripheral vascular disease and higher body mass index are associated with increased risks of COVID‐19 infection, hospitalized COVID‐19, and critically ill COVID‐19.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression

            Background: The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotypic correlate (pleiotropy). Methods: We view Mendelian randomization with multiple instruments as a meta-analysis, and show that bias caused by pleiotropy can be regarded as analogous to small study bias. Causal estimates using each instrument can be displayed visually by a funnel plot to assess potential asymmetry. Egger regression, a tool to detect small study bias in meta-analysis, can be adapted to test for bias from pleiotropy, and the slope coefficient from Egger regression provides an estimate of the causal effect. Under the assumption that the association of each genetic variant with the exposure is independent of the pleiotropic effect of the variant (not via the exposure), Egger’s test gives a valid test of the null causal hypothesis and a consistent causal effect estimate even when all the genetic variants are invalid instrumental variables. Results: We illustrate the use of this approach by re-analysing two published Mendelian randomization studies of the causal effect of height on lung function, and the causal effect of blood pressure on coronary artery disease risk. The conservative nature of this approach is illustrated with these examples. Conclusions: An adaption of Egger regression (which we call MR-Egger) can detect some violations of the standard instrumental variable assumptions, and provide an effect estimate which is not subject to these violations. The approach provides a sensitivity analysis for the robustness of the findings from a Mendelian randomization investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

              ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants.
                Bookmark

                Author and article information

                Contributors
                zl2509@cumc.columbia.edu
                Journal
                Biometrics
                Biometrics
                10.1111/(ISSN)1541-0420
                BIOM
                Biometrics
                John Wiley and Sons Inc. (Hoboken )
                0006-341X
                1541-0420
                06 September 2022
                06 September 2022
                : 10.1111/biom.13732
                Affiliations
                [ 1 ] Department of Statistics and Actuarial Science The University of Hong Kong Hong Kong SAR China
                [ 2 ] Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan China
                [ 3 ] Department of Biostatistics Columbia University New York New York USA
                Author notes
                [*] [* ] Correspondence

                Zhonghua Liu, Department of Biostatistics, Columbia University, New York, NY 10032, USA.

                Email: zl2509@ 123456cumc.columbia.edu

                Author information
                https://orcid.org/0000-0002-6352-2645
                https://orcid.org/0000-0003-3048-9823
                Article
                BIOM13732
                10.1111/biom.13732
                9538932
                35942938
                1ebf66d2-2de8-4f20-a820-b0e62f25474a
                © 2022 The International Biometric Society.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 14 June 2022
                : 08 October 2021
                : 27 July 2022
                Page count
                Figures: 2, Tables: 4, Pages: 12, Words: 7761
                Categories
                Biometric Methodology
                Biometric Methodology
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.0 mode:remove_FC converted:07.10.2022

                Biostatistics
                covid‐19,horizontal pleiotropy,instrumental variables,mendelian randomization,penalization,weak instruments

                Comments

                Comment on this article