1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between human blood metabolites and cerebral cortex architecture: evidence from a Mendelian randomization study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dysregulation of circulating metabolites may affect brain function and cognition, associated with alterations in the cerebral cortex architecture. However, the exact cause remains unclear. This study aimed to determine the causal effect of circulating metabolites on the cerebral cortex architecture.

          Methods

          This study utilized retrieved data from genome-wide association studies to investigate the relationship between blood metabolites and cortical architecture. A total of 1,091 metabolites and 309 metabolite ratios were used for exposure. The brain cortex surface area and cortex thickness were selected as the primary outcomes in this study. In this study, the inverse variance weighting method was used as the main analytical method, complemented by sensitivity analyses that were more robust to pleiotropy. Furthermore, metabolic pathway analysis was performed via MetaboAnalyst 6.0. Finally, reverse Mendelian randomization (MR) analysis was conducted to assess the potential for reverse causation.

          Results

          After correcting for the false discovery rate (FDR), we identified 37 metabolites and 9 metabolite ratios that showed significant causal associations with cortical structures. Among these, Oxalate was found to be most strongly associated with cortical surface area ( β: 2387.532, 95% CI 756.570–4018.495, p = 0.037), while Tyrosine was most correlated with cortical thickness ( β: −0.015, 95% CI −0.005 to −0.025, p = 0.025). Furthermore, pathway analysis based on metabolites identified six significant metabolic pathways associated with cortical structures and 13 significant metabolic pathways based on metabolite ratios.

          Conclusion

          The identified metabolites and relevant metabolic pathways reveal potential therapeutic pathways for reducing the risk of neurodegenerative diseases. These findings will help guide health policies and clinical practice in treating neurodegenerative diseases.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

          ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            KEGG for taxonomy-based analysis of pathways and genomes

            KEGG ( https://www.kegg.jp ) is a manually curated database resource integrating various biological objects categorized into systems, genomic, chemical and health information. Each object (database entry) is identified by the KEGG identifier (kid), which generally takes the form of a prefix followed by a five-digit number, and can be retrieved by appending /entry/kid in the URL. The KEGG pathway map viewer, the Brite hierarchy viewer and the newly released KEGG genome browser can be launched by appending /pathway/kid, /brite/kid and /genome/kid, respectively, in the URL. Together with an improved annotation procedure for KO (KEGG Orthology) assignment, an increasing number of eukaryotic genomes have been included in KEGG for better representation of organisms in the taxonomic tree. Multiple taxonomy files are generated for classification of KEGG organisms and viruses, and the Brite hierarchy viewer is used for taxonomy mapping, a variant of Brite mapping in the new KEGG Mapper suite. The taxonomy mapping enables analysis of, for example, how functional links of genes in the pathway and physical links of genes on the chromosome are conserved among organism groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interpreting findings from Mendelian randomization using the MR-Egger method

              Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption—the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases. Electronic supplementary material The online version of this article (doi:10.1007/s10654-017-0255-x) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/1663858/overviewRole: Role: Role: Role: Role:
                Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/2149856/overviewRole: Role: Role: Role:
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                09 May 2024
                2024
                : 15
                : 1386844
                Affiliations
                [1] 1Department of Neurology, China-Japan Union Hospital, Jilin University , Changchun, China
                [2] 2Department of Neurology, The First Hospital of Jilin University , Changchun, China
                Author notes

                Edited by: Chunyu Li, Sichuan University, China

                Reviewed by: Jin Gao, Emory University, United States

                Vivek Tiwari, Indian Institute of Science Education and Research Berhampur (IISER), India

                *Correspondence: Songyan Liu, liu_sy@ 123456jlu.edu.cn
                Article
                10.3389/fneur.2024.1386844
                11111910
                38784905
                1e9e6e8f-35ac-40a6-a685-a1583fa47f42
                Copyright © 2024 Jiang, Sun and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 February 2024
                : 25 April 2024
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 57, Pages: 12, Words: 7520
                Funding
                Funded by: Special Project for Health Research Talents of Jilin Province
                Award ID: 2023SCZ34
                Funded by: Medical Science and Technology Innovation and Health Management Program Project of Jilin Province
                Award ID: 202307-A01
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Special Project for Health Research Talents of Jilin Province (2023SCZ34) and the Medical Science and Technology Innovation and Health Management Program Project of Jilin Province (202307-A01).
                Categories
                Neurology
                Original Research
                Custom metadata
                Neurogenetics

                Neurology
                brain cortex thickness,brain cortex surficial area,metabolites,genome-wide association studies,mendelian randomization

                Comments

                Comment on this article