Tool use research has suffered from a lack of consistent theoretical frameworks. There is a plethora of tool use definitions and the most widespread ones are so inclusive that the behaviors that fall under them arguably do not have much in common. The situation is aggravated by the prevalence of anecdotes, which have played an undue role in the literature. In order to provide a more rigorous foundation for research and to advance our understanding of the interrelation between tool use and cognition, we suggest the adoption of Fragaszy and Mangalam’s (2018) tooling framework, which is characterized by the creation of a body-plus-object system that manages a mechanical interface between tool and surface. Tooling is limited to a narrower suite of behaviors than tool use, which might facilitate its neurocognitive investigation. Indeed, evidence in the literature indicates that tooling has distinct neurocognitive underpinnings not shared by other activities typically classified as tool use, at least in primates. In order to understand the extent of tooling incidences in previous research, we systematically surveyed the comprehensive tool use catalog by Shumaker et al. (2011). We identified 201 tool use submodes, of which only 81 could be classified as tooling, and the majority of the tool use examples across species were poorly supported by evidence. Furthermore, tooling appears to be phylogenetically less widespread than tool use, with the greatest variability found in the primate order. However, in order to confirm these findings and to understand the evolution and neurocognitive mechanisms of tooling, more systematic research will be required in the future, particularly with currently underrepresented taxa.